Show simple item record

dc.contributor.advisorHerdiyeni, Yeni
dc.contributor.authorKiswanto., Dedy
dc.date.accessioned2014-01-20T06:09:06Z
dc.date.available2014-01-20T06:09:06Z
dc.date.issued2013
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/67153
dc.description.abstractThis research proposes a method for moth pests identification using wavelet transformation and Probabilistic Neural Netwok (PNN). Wavelet transformation method is used to get image features. This study focused on 3 types of moth pests that Crocidolumia binotalis zeller, Spodoptera exigua (Hubner), and Spodoptera litura F. To get the best performance of classifier was analyzed by confussion matrix and k-fold cross validation with k = 5. Result for identification of moth pests diamondback in this study showed an average accurancy of 80.74%. This result shows that the wavelet transformation and classifier Probabilistic Neural Network can be applied for the identification of cabbage caterpillar pestsen
dc.language.isoid
dc.titleIdentifikasi Hama Ulat Kubis Menggunakan Transformasi Wavelet dengan Klasifikasi Probabilistic Neural Networken
dc.subject.keywordWavelet Transformation.en
dc.subject.keywordPNNen
dc.subject.keywordCabbage Caterpillar Pesten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record