Show simple item record

dc.contributor.advisorHaryanto, Toto
dc.contributor.advisorMaryana, Nina
dc.contributor.authorAmalia, Rizkia Hanna
dc.date.accessioned2013-09-11T06:48:24Z
dc.date.available2013-09-11T06:48:24Z
dc.date.issued2013
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/65310
dc.description.abstractPests cause a major failures in harvesting tomato plants. Identification of tomato pests can be done in various ways. Nowadays, objects can be performed by processing digital images. In this research, Gray Level Co-occurrence Matrix (GLCM) is used to identify three classes of plant pests of tomato, namely Helicoverpa armigera, Spodoptera litura and Chrysodeixis chalcites. For identification, only three types of pests in adults phase was used. Identification is conducted using the five elements of grayscale image: energy, homogeneity, contrast, correlation and entropy. The identification result using Probabilistic Neural Network (PNN) produces average accuracy of 78.89%.en
dc.subjectBogor Agricultural University (IPB)en
dc.subjecttomato pesten
dc.subjectProbabilistic Neural Networken
dc.subjectobject identificationen
dc.subjectLevel Co-occurrence Matrixen
dc.titleIdentifikasi Citra Hama Tomat Menggunakan Gray Level Co-occurrence Matrix dan Klasifikasi Probabilistic Neural Networken


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record