Show simple item record

Artificial neural network and support vector regression to predict total rainfall in wet season

dc.contributor.advisorBuono, Agus
dc.contributor.advisorHaryanto, Toto
dc.contributor.authorSarwoko, Dedi
dc.date.accessioned2013-05-24T03:23:55Z
dc.date.available2013-05-24T03:23:55Z
dc.date.issued2013
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/63752
dc.description.abstractThe Artificial Neural Network (ANN) and Support Vector Regression (SVR) models were developed to predict the total of rainfall in wet season in Indramayu. Onset Data, length of rainy season and monthly Southern Oscillation Index value on August, October and February are used as the input of the models. ANN employed in this study was multilayer perceptron with neuron hidden layer as many as 10, 30 and 50, and trained with gradientdescent backpropagation algorithm. SVR employed with three kinds of kernel functions, linear, polynomial and radial basis function. Models trained with three scenarios length of training data i.e. 15, 20 and 25 periode/ years. This research compared perfomance of two models by roort of mean squared error (RMSE), mean percent of error (MAPE) and correlation coefficient (R) values. The optimal performance of ANN model is mean of percent error 22,70%, root of mean squared error 231,32, and correlation 0,46 , resulted from model with 30 units hidden neuron and trained by 20 training data. SVR models showed better performance then ANN models. SVR model with linear kernel trained by 20 training data show the best performace with root of mean squared error 120,60, correlation 0,86 and mean of percent error 9,09%.en
dc.description.abstractFenomena iklim merupakan salah satu faktor yang sulit dikendalikan dan berpengaruh pada produktifitas tanaman pangan. Salah satu upaya untuk mengurangi resiko kerugian ekonomi dari hilangnya investasi pada proses penanaman maupun gagal panen adalah dengan cara mendeteksi dini fenomena iklim di masa mendatang. Kondisi ini mendorong dilakukannya prediksi iklim, khususnya prediksi curah hujan. Total hujan pada musim hujan memberikan gambaran kondisi ketersediaan air pada musim hujan dan musim berikutn
dc.subjectNeural Network (NN)en
dc.subjectSupport Vector Regression (SVR)en
dc.subjectrainfallen
dc.subjectpredictionen
dc.titlePemodelan prediksi total hujan pada musim hujan menggunakan jaringan saraf tiruan dan support vector regression
dc.titleArtificial neural network and support vector regression to predict total rainfall in wet season


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record