Show simple item record

Optimasi Algoritme Voting Feature Intervals 5 Menggunakan Algoritme Genetika Pada Data Tuberkulosis Paru

dc.contributor.advisorKustiyo, Aziz
dc.contributor.authorBr Tarigan, Ervina Kristin
dc.date.accessioned2013-04-01T06:57:36Z
dc.date.available2013-04-01T06:57:36Z
dc.date.issued2010
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/61875
dc.description.abstractWe proposed a genetic algorithm to optimize VFI5 classification algorithm and to get the best feature weights in lung tuberculocis data. This research used a uniform value for this features weights which equals to one. The accuracy obtained was 83%. Genetic Algorithm (GA) is used to optimize VFI5 by determining the optimal weights for each feature. GA will combine each weight and search the best combination to get an optimal solution. In this research, GA can find the optimal weight feature VFI5 classification algorithm in lung tuberculocis data. The optimal feature weights are “the blood cough with average weight 0.91, limp with average weight 0.82, lost of appetite with average weight 0.63, body weight decrease with average weight 0.62, fever and perfiration with average weight 0.62”. in this reseached, 3-fold cross validation was used to divide data into traning and testing and obtained 95% accuracy in each fold. In conclucions, this research has provided with and accurate model to predict TB and Non TB data instances.en
dc.subjectVFI5 Classification Algorithmen
dc.subjectGenetic Algorithmen
dc.subjectTuberculosis Paruen
dc.titleOptimation Of Voting Feature Intervals 5 Classification Algorithm With Genetic Algorithm in Data Of Tuberculosis Paruen
dc.titleOptimasi Algoritme Voting Feature Intervals 5 Menggunakan Algoritme Genetika Pada Data Tuberkulosis Paru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record