View Item 
      •   IPB Repository
      • IPBana
      • Published by Others
      • Faculty of Fisheries and Marine Science
      • View Item
      •   IPB Repository
      • IPBana
      • Published by Others
      • Faculty of Fisheries and Marine Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Teknik Penentuan Dini Jenis Kelamin Koi

      Thumbnail
      View/Open
      ENGEMBANGAN TEKNIK PENENTUAN DINI JENIS KELAMIN KOI (207.6Kb)
      Date
      2009
      Author
      Jaya, Indra
      Iqbal, Muhammad
      Metadata
      Show full item record
      Abstract
      Salah satu faktor utama yang dihadapi para pemulia atau pembudidaya koi adalah bagaimana meng­ identifikasi jenis kelamin koi sedini mungkin, 1ika identifikasi ini dapat dilakukan sedini mungkin maka ke­ untungan finansial yang dapat diperoleh akan meningkat secara nyata, Dalam tulisan ini diuraikan hasil peng­ embangan teknik identifikasi dini jenis kelamin koi melalui kombinasi antara deskriptor dan aplikasi teknik jaringan saraf tiruan (1ST). dengan algoritma 1ST yang digunakan adalah perambatan balik, Data masukan yang digunakan dalam komputasi 1ST adalah nilai deskriptor morfometrik dan energetik foto koi, Analisis deskpritor morfometrik menunjukkan bahwa deteksi dini dapat dilakukan dalam waktu kurang dari 2 (dua) bulan, jauh lebih cepat dari metode konvensional histologi. Hasil komputasi 1ST menunjukkan bahwa nilai akurasi penentuan jenis kelamin cukup baik, yakni sekitar 70% dalam mengidentifikasi jenis kelamin koi, Kata kunci: jenis kelamin, deskriptor, jaringan syaraf tiruan, ikan koi, ABSTRACT One of the critical issues faced by a Koi's breeder is sexing at the early age, sinee it will result in fi­ nancial benefit for the breeder. In this paper we describe the results of early technique that is devel­ oped for the Koi using combination of descriptor method and application of artificial neural network (ANN), where we used back-propagation algorithm in the computation. Input data for ANN are obtained from both morphometric and energetic descriptors of Koi's images. The morphometric descriptor shows that early scx­ ing is possible and can be accomplished within 2 (two) months, which is much fastcr than convcntional tech­ nique by means of histology. The accuracy of ANN computation for sexing both descriptors as input is about 70%. Keywords: scxing, descriptors, artificial neural network, Koi
      URI
      http://repository.ipb.ac.id/handle/123456789/58877
      Collections
      • Faculty of Fisheries and Marine Science [336]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository