Show simple item record

Regresi Kekar Penduga M, Penduga S, dan Penduga MM pada Analisis Regresi Berganda

dc.contributor.advisorAunuddin
dc.contributor.advisorSulvianti, Itasia Dina
dc.contributor.authorFaulina, Nila
dc.date.accessioned2012-11-05T01:57:12Z
dc.date.available2012-11-05T01:57:12Z
dc.date.issued2012
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/58328
dc.description.abstractIn classical multiple regression, the ordinary least squares estimation is the best method if assumptions are met to obtain regression weights when analyzing data. However, if the data does not satisfy some of these assumptions, then sample estimates and results can be misleading. Therefore, statistical techniques that are able to cope with or to detect outlying observations have been developed. Robust regression is an important method for analyzing data that are contaminated with outliers. It can be used to detect outliers and to provide resistant results in the presence of outliers. The purpose of this study is compare robust regression M-estimation, S-estimation, and MM-estimation with ordinary least square methods via simulation study. The simulation study is used in determine which methods best in all of the linear regression scenarios.en
dc.subjectRobust Regressionen
dc.subjectM-Estimationen
dc.subjectS-Estimationen
dc.subjectMM-Estimation,en
dc.subjectOutlieren
dc.titleRobust Regression M-Estimation, S-Estimation, and MM-Estimation in Multiple Regressionen
dc.titleRegresi Kekar Penduga M, Penduga S, dan Penduga MM pada Analisis Regresi Berganda


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record