View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Jangka Panjang dari Proses Poisson Siklik dengan Fungsi Intensitas Global Diketahui

      Long-term Prediction of the Cyclic Poisson Process with Known Global Intensity Function.

      Thumbnail
      View/Open
      Full text (870.8Kb)
      Abstract (501.5Kb)
      BAB I (504.5Kb)
      BAB II (647.0Kb)
      BAB III (681.4Kb)
      BAB IV (504.2Kb)
      Cover (575.1Kb)
      daftar pustaka (363.6Kb)
      Lampiran (636.4Kb)
      Date
      2012
      Author
      Margaretha, Agustina
      Mangku,I Wayan
      Siswandi
      Metadata
      Show full item record
      Abstract
      In this manuscript, long term prediction of a cyclic Poisson process with known global intensity is discussed. Prediction intervals are constructed using a single realization of the past data of a cyclic Poisson process observed in the interval [ ]. This data are used to predict future events. It is assumed that the period of the intensity function is known. The prediction interval with ( ) coverage probability for waiting time of the -th event of a cyclic Poisson process has been formulated. In addition, asymptotic normality of estimators for the distribution function and -th quintile of waiting time for the -th event have been proved. The coverage probability that the waiting time of the -th event will be in the formulated prediction interval has been proved, which converges to ( ). Furthermore, this paper presents some examples of construction of estimated distribution function. Moreover, determination of the prediction intervals with coverage probability ( ) for the waiting time of the -th event of a cyclic Poisson process are calculated using generated data
       
      Pada karya ilmiah ini dibahas prediksi jangka panjang dari proses Poisson siklik dengan fungsi intensitas global diketahui. Interval prediksi yang disusun hanya menggunakan realisasi tunggal data masa lalu dari proses Poisson siklik yang diamati pada interval [ ]. Data ini digunakan untuk meramalkan kejadian yang akan datang. Diasumsikan bahwa periode dari fungsi intensitas tersebut adalah diketahui. Telah dirumuskan interval prediksi dengan cakupan peluang sebesar ( ) untuk waktu tunggu kejadian ke- pada proses Poisson siklik. Selain itu, telah dibuktikan kenormalan asimtotik penduga fungsi sebaran dan penduga kuantil ke- waktu tunggu kejadian ke- , serta dibuktikan bahwa waktu tunggu kejadian ke- akan berada pada interval prediksi yang dirumuskan memiliki peluang yang konvergen ke ( ) Kajian ini diakhiri dengan contoh penyusunan penduga fungsi sebaran dan penentuan interval prediksi dengan cakupan peluang sebesar ( ) untuk kejadian ke- pada proses Poisson siklik dengan menggunakan data bangkitan.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/55660
      Collections
      • UT - Mathematics [1096]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository