Studi Elektrolit Padat Hidroksiapatit dan Katoda Sulfur-Karbon dari Cangkang dan Membran Telur untuk Baterai Litium–Sulfur
Abstract
Pengembangan baterai lithium–sulfur (Li–S) masih menghadapi tantangan utama berupa konduktivitas ionik elektrolit yang rendah dan resistansi internal yang tinggi. Penelitian ini bertujuan untuk menginvestigasi pengaruh penambahan nano-hidroksiapatit (nano-HA) yang disintesis dari cangkang telur ayam ke dalam solid polymer electrolyte (SPE) berbasis PEO–LiTFSI, serta pemanfaatan karbon aktif dari membran telur ayam sebagai material komposit sulfur. Nano-HA disintesis dan dikarakterisasi menggunakan XRD, FTIR, dan SEM, sedangkan karbon aktif divalidasi melalui XRD dan SEM–EDX. Hasil penelitian menunjukkan bahwa penambahan nano-HA meningkatkan konduktivitas ionik SPE dari 1,45×10?5 S/cm menjadi 1,80×10?5 S/cm. Analisis elektrokimia menggunakan Electrochemical Impedance Spectroscopy (EIS) menunjukkan bahwa nano-HA mampu menurunkan resistansi total baterai Li–S. Selain itu, karbon aktif berbasis membran telur ayam menghasilkan nilai resistansi total yang sebanding dengan karbon aktif komersial. Temuan ini menunjukkan bahwa limbah cangkang dan membran telur ayam berpotensi dimanfaatkan sebagai material fungsional ramah lingkungan untuk meningkatkan performa dan keberlanjutan baterai Li–S. The development of lithium–sulfur (Li–S) batteries remains challenged by low electrolyte ionic conductivity and high internal resistance. This study investigates the effect of incorporating nano-hydroxyapatite (nano-HA) synthesized from chicken eggshells into a PEO–LiTFSI–based solid polymer electrolyte (SPE), as well as the use of activated carbon derived from chicken eggshell membranes as a sulfur composite material. Nano-HA and activated carbon were characterized using XRD, FTIR, SEM, and SEM–EDX. The addition of nano-HA increased the ionic conductivity of the SPE from 1.45×10?5 S/cm to 1.80×10?5 S/cm. Electrochemical impedance spectroscopy (EIS) analysis showed that nano-HA reduced the total resistance of the Li–S battery. Moreover, eggshell membrane–derived activated carbon exhibited total resistance comparable to commercial activated carbon, indicating its potential as a sustainable alternative. These results highlight the valorization of eggshell waste as functional materials to enhance Li–S battery performance and sustainability.
Collections
- UT - Physics [1233]
