View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Tingkat Akurasi Kombinasi Band Citra Sentinel-2 dan Integrasinya dengan Sentinel-1 dalam Klasifikasi Tutupan Lahan

      Thumbnail
      View/Open
      Cover (445.3Kb)
      Fulltext (1.176Mb)
      Lampiran (179.1Kb)
      Date
      2026
      Author
      Fayiz, M. Zhafran
      Priyanto
      Metadata
      Show full item record
      Abstract
      Informasi klasifikasi tutupan lahan yang akurat sangat penting dalam pemantauan perubahan penggunaan lahan dan pengelolaan sumber daya secara berkelanjutan. Penelitian ini bertujuan membandingkan skenario penggunaan band dan integrasi citra Sentinel serta pembuatan klasifikasi tutupan lahan menggunakan algoritma random forest dan evaluasinya terhadap perubahan tutupan. Data dikumpulkan untuk dua periode (2018 dan 2024) pada musim kemarau dan hujan, dilengkapi dengan 180 titik verifikasi lapangan. Integrasi informasi spektral dan tekstural menunjukkan peningkatan akurasi dengan nilai akurasi keseluruhan sebesar 95,56% dan akurasi Kappa 94,67%. Temuan penting menunjukkan bahwa integrasi multi-sensor meningkatkan ketepatan klasifikasi, terutama pada kelas hutan, pertambangan, dan pertanian. Analisis perubahan tutupan lahan menunjukkan konversi positif seluas 644,13 ha didominasi dari tutupan lahan pertambangan menjadi tutupan hutan, sedangkan perubahan negatif seluas 660,3 ha didominasi oleh alih konversi sawah menjadi permukiman. Pendekatan ini memberikan implikasi penting dalam pemantauan dinamis lanskap dan mendukung perencanaan tata ruang berbasis integrasi data citra berbeda.
       
      Accurate land cover classification information is essential for monitoring land use change and sustainable resource management. This study aims to compare the scenario of band use and the integration of Sentinel imagery as well as the creation of land cover classification using random forest algorithm and its evaluation of cover changes. The data was collected for two periods (2018 and 2024) in the dry and rainy seasons, complemented by 180 field verification points. The integration of spectral and textural information showed an increase in accuracy with an Overall Accuracy value of 95,56% and a Kappa of 94,67%. Important findings show that multi-sensor integration improves classification accuracy, especially in forest, mining, and agricultural classes. Analysis of land cover change showed a positive conversion of 644,13 ha were dominated from mining land cover becomes forest cover, while negative changes of 660,3 ha were dominated by conversion of rice fields into settlements. This approach provides important implications in dynamic monitoring of landscapes and supports spatial planning based on the integration of different image data
       
      URI
      http://repository.ipb.ac.id/handle/123456789/171999
      Collections
      • UT - Forest Management [3207]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository