Show simple item record

dc.contributor.advisorJaya, I Nengah Surati
dc.contributor.advisorIlham, Qori Pebrial
dc.contributor.authorGAFFRILA, GANTA
dc.date.accessioned2025-08-15T06:18:41Z
dc.date.available2025-08-15T06:18:41Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169378
dc.description.abstractTulisan ini menerangkan tentang identifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Penelitian ini mengintegrasikan data citra PlanetScope dengan data spasial sosio-geo-biofisik untuk mengembangkan model algoritma decision tree of machine learning guna mengidentifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Model diuji dengan tiga skenario kombinasi variabel: (1) variabel spektral (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) variabel sosio-geo-biofisik (substrat, salinitas, elevasi, jarak dari sungai, jarak dari jalan); dan (3) kombinasi keduanya. Hasil menunjukkan algoritma terbaik diperoleh dengan menggunakan skenario ketiga dengan kombinasi variabel spektral (NDVI, SAVI, ARVI, VDVI, NRGI) dan variabel sosio-geo-biofisik (substrat, elevasi, jarak dari jalan) menghasilkan performa overall accuracy 94,5% dan kappa accuracy 93%.
dc.description.abstractThis paper describes the identification of the spatial distribution of mangrove forests in Langkat Regency. The study integrates PlanetScope image with socio-geo-biophysical spatial data, for developing a decision tree algorithm model of machine learning to identify the spatial distribution of mangrove forests in Langkat Regency. The model was tested with three variable combination scenarios: (1) spectral variables (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) socio-geo-biophysical variables (substrate, salinity, elevation, distance from rivers, distance from roads); and (3) a combination of both. The study results show that the best algorithm was obtained by using third scenario with a combination of spectral variables (NDVI, SAVI, ARVI, VDVI, NRGI) and socio-geo-biophysical variables (substrate, elevation, distance from roads) produced an overall accuracy of 94.5% and a kappa accuracy of 93%.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleIdentifikasi Sebaran Spasial Hutan Mangrove Berbasis Algoritma Machine Learning dengan Citra PlanetScope di Kabupaten Langkatid
dc.title.alternativeMachine Learning Algorithm-based Identification of Mangrove Forest Spatial Distribution using PlanetScope Imagery in Langkat Regency
dc.typeSkripsi
dc.subject.keyworddecision treeid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record