| dc.contributor.advisor | Jaya, I Nengah Surati | |
| dc.contributor.advisor | Ilham, Qori Pebrial | |
| dc.contributor.author | GAFFRILA, GANTA | |
| dc.date.accessioned | 2025-08-15T06:18:41Z | |
| dc.date.available | 2025-08-15T06:18:41Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/169378 | |
| dc.description.abstract | Tulisan ini menerangkan tentang identifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Penelitian ini mengintegrasikan data citra PlanetScope dengan data spasial sosio-geo-biofisik untuk mengembangkan model algoritma decision tree of machine learning guna mengidentifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Model diuji dengan tiga skenario kombinasi variabel: (1) variabel spektral (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) variabel sosio-geo-biofisik (substrat, salinitas, elevasi, jarak dari sungai, jarak dari jalan); dan (3) kombinasi keduanya. Hasil menunjukkan algoritma terbaik diperoleh dengan menggunakan skenario ketiga dengan kombinasi variabel spektral (NDVI, SAVI, ARVI, VDVI, NRGI) dan variabel sosio-geo-biofisik (substrat, elevasi, jarak dari jalan) menghasilkan performa overall accuracy 94,5% dan kappa accuracy 93%. | |
| dc.description.abstract | This paper describes the identification of the spatial distribution of mangrove forests in Langkat Regency. The study integrates PlanetScope image with socio-geo-biophysical spatial data, for developing a decision tree algorithm model of machine learning to identify the spatial distribution of mangrove forests in Langkat Regency. The model was tested with three variable combination scenarios: (1) spectral variables (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) socio-geo-biophysical variables (substrate, salinity, elevation, distance from rivers, distance from roads); and (3) a combination of both. The study results show that the best algorithm was obtained by using third scenario with a combination of spectral variables (NDVI, SAVI, ARVI, VDVI, NRGI) and socio-geo-biophysical variables (substrate, elevation, distance from roads) produced an overall accuracy of 94.5% and a kappa accuracy of 93%. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Identifikasi Sebaran Spasial Hutan Mangrove Berbasis Algoritma Machine Learning dengan Citra PlanetScope di Kabupaten Langkat | id |
| dc.title.alternative | Machine Learning Algorithm-based Identification of Mangrove Forest Spatial Distribution using PlanetScope Imagery in Langkat Regency | |
| dc.type | Skripsi | |
| dc.subject.keyword | decision tree | id |