View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Sistem Prediksi Laporan Sampah dan Banjir di Jakarta dengan Metode Holt-Winters Berbasis Website

      Thumbnail
      View/Open
      Cover (415.9Kb)
      Fulltext (1.671Mb)
      Lampiran (1.222Mb)
      Date
      2025
      Author
      UMMAH, KHAERA
      Fathonah, Lathifunnisa
      Metadata
      Show full item record
      Abstract
      Masalah pengelolaan sampah dan banjir di DKI Jakarta memerlukan sistem prediksi yang efektif untuk meningkatkan kecepatan respons dari rata-rata sembilan hari menjadi lebih singkat. Penelitian ini mengembangkan sistem prediksi laporan sampah dan banjir berbasis website menggunakan metode Holt-Winters Exponential Smoothing dengan pendekatan Prototype. Data historis laporan periode 2019-2024 dianalisis untuk memprediksi jumlah laporan tahun 2025. Hasil penelitian menunjukkan rata-rata tingkat akurasi prediksi 30,44% untuk laporan sampah dan 30,95 untuk laporan banjir. Analisis data mengungkapkan tidak terdapat hubungan langsung antara laporan sampah dengan kejadian banjir. Sistem berhasil menyediakan dashboard interaktif untuk visualisasi prediksi dan pemetaan titik rawan banjir yang mendukung pengambilan keputusan dan alokasi sumber daya yang lebih efektif.
       
      Waste and flood management problems in DKI Jakarta require an effective prediction system to improve response time from an average of nine days to shorter periods. This study develops a website-based waste and flood report prediction system using the Holt-Winters Exponential Smoothing method with a Prototype approach. Historical report data from 2019 to 2024 were analyzed to predict the number of reports in 2025. The results show an average prediction accuracy rate of 30,44% for waste reports and 30,95 for flood reports. Data analysis reveals no direct relationship between waste reports and flood incidents. The system successfully provides an interactive dashboard for prediction visualization and flood-prone area mapping that supports more effective decision-making and resource allocation.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/169100
      Collections
      • UT - Software Engineering Technology [182]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository