Show simple item record

dc.contributor.advisorGiri, Endang Purnama
dc.contributor.authorKusumaningtyas, Lathifah Kurnia
dc.date.accessioned2025-07-30T09:43:55Z
dc.date.available2025-07-30T09:43:55Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/166219
dc.description.abstractMelon harvesting robot digunakan untuk meningkatkan produktivitas pemanenan buah melon. Untuk melakukan pemanenan, robot memerlukan kemampuan mendeteksi tangkai buah dan buah melon. Pemotongan tangkai buah melon dengan bentuk T dapat meningkatkan masa simpan buah melon. Pendeteksian dilakukan dengan menggunakan instance segmentation dengan menggunakan algoritma YOLOv8s-seg. Data yang digunakan dalam penelitian untuk melatih model diambil dengan menggunakan kamera RGB-D. Pelatihan model dilakukan dengan menggunakan 12 kombinasi parameter epoch, batch size, dan learning rate. Berdasarkan pelatihan model, menghasilkan nilai hasil train box dan train mask. Mean average precision (mAP) terbaik dihasilkan dari percobaan ke 7, dengan nilai mAP50 mask sebesar 0,911 dan mAP50-95 mask sebesar 0,642 dengan akurasi model sebesar 75%. Model terbaik telah berhasil melakukan instance segmentation untuk mendeteksi tangkai buah dan buah melon. Kemudian model ini diimplementasikan pada video RGB-D untuk mendapatkan informasi jarak antara objek dan kamera. Informasi jarak dapat dimanfaatkan dalam penelitian terkait pengembangan melon harvesting robot.
dc.description.abstractMelon harvesting robot is used to increase the productivity of melon harvesting. To harvest, the robot must detect melon fruit and stem. Cutting melon stems in a T shape can increase the shelf life of melon fruit. Detection is done using instance segmentation using the YOLOv8s-seg algorithm. The data used to train the model was taken using an RGB-D camera. Model training was carried out using 12 combinations of epoch parameters, batch size, and learning rate. Based on model training, it produces train box and train mask results. The best mean average precision (mAP) was from the 7th experiment, with mAP50 mask values of 0.911 and mAP50-95 mask values of 0.642, accuracy model is 75%. The best model has successfully performed instance segmentation to detect melon fruit and stems. The best model was then implemented on the RGB-D video results to obtain distance information between the object and the camera. The distance information obtained can be used for further research related to the development of melon harvesting robots.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleInstance Segmentation untuk Identifikasi Tangkai Buah dan Buah Melon Menggunakan YOLOv8id
dc.title.alternative
dc.typeSkripsi
dc.subject.keywordtanaman melonid
dc.subject.keywordYOLOv8id
dc.subject.keywordinstance segmentationid
dc.subject.keywordtangkai melonid
dc.subject.keywordkamera RGB-Did


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record