View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      PENERAPAN KECERDASAN BUATAN PADA CCTV UNTUK IDENTIFIKASI PAKAIAN DINAS LAPANGAN (PDL) SITE ENGINEER DI PROYEK KONSTRUKSI

      Thumbnail
      View/Open
      Cover (930.3Kb)
      Fulltext (2.138Mb)
      Lampiran (264.7Kb)
      Date
      2025
      Author
      KURNIA, AQIM TRY
      Fathonah, Lathifunnisa
      Metadata
      Show full item record
      Abstract
      AQIM TRY KURNIA. Penerapan Kecerdasan Buatan pada CCTV untuk Identifikasi Pakaian Dinas Lapangan (PDL) Site Engineer di Proyek Konstruksi. Dibimbing oleh Lathifunnisa Fathonah, S.ST, M.T. Penelitian ini mengembangkan sistem pemantauan keselamatan kerja berbasis CCTV yang terintegrasi dengan Raspberry Pi 5 dan algoritma YOLOv8 untuk mendeteksi penggunaan Pakaian Dinas Lapangan (PDL) secara otomatis di proyek konstruksi PT Wijaya Karya (Persero) Tbk. Model YOLOv8s dilatih menggunakan 3.712 citra dari berbagai kondisi dan sudut pandang, menghasilkan nilai mAP@0.5 sebesar 88,6%. Sistem mampu mengklasifikasikan individu ke dalam empat kategori: site-engineer, buruh, unknown, dan person. Untuk menjalankan model secara real-time di perangkat edge, Raspberry Pi dilengkapi modul akselerator Hailo AI Kit (M.2 HAT) dan model dikonversi ke format .hef. Saat terjadi pelanggaran penggunaan APD, sistem secara otomatis menangkap citra, mengirim notifikasi melalui protokol MQTT, dan menampilkan data ke dashboard pemantauan. Dengan sistem ini, proses pengawasan menjadi lebih cepat, konsisten, dan tidak bergantung pada pemantauan manual, sekaligus mendukung penerapan teknologi AI di lapangan secara langsung.
       
      AQIM TRY KURNIA. Penerapan Kecerdasan Buatan pada CCTV untuk Identifikasi Pakaian Dinas Lapangan (PDL) Site Engineer di Proyek Konstruksi. Supervised by Lathifunnisa Fathonah, S.ST, M.T. This study developed a workplace safety monitoring system using CCTV integrated with Raspberry Pi 5 and the YOLOv8 deep learning algorithm to automatically detect the use of Field Uniform (PDL) by site engineers at PT Wijaya Karya (Persero) Tbk construction projects. The YOLOv8s model was trained on 3.712 images under various conditions and perspectives, achieving a mAP@0.5 score of 88.6%. The system classifies individuals into four categories: site-engineer, buruh, unknown, and person. To enable real-time inference on edge devices, the Raspberry Pi is equipped with a Hailo AI Kit (M.2 HAT) and the model is converted to .hef format. When a PPE violation is detected, the system automatically captures the evidence image, sends a real-time notification via the MQTT protocol, and displays the data on a monitoring dashboard. This system enables faster, more consistent surveillance without manual intervention, supporting the direct application of AI in the field.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166024
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository