Model Dinamika untuk Mengkaji Pertumbuhan Tumor dan Pengaruh Imunoterapi Checkpoint Inhibitor pada Triple Negative Breast Cancer
Date
2025Author
Ismail, Nurdhuha Lil Firdaus
Kartono, Agus
Wahyudi, Setyanto Tri
Metadata
Show full item recordAbstract
Dalam penelitian ini, model dinamika Triple Negative Breast Cancer (TNBC) dengan pengaruh imunoterapi dijelaskan. Sebesar 21,1% dari 22% angka mortalitas di Indonesia disebabkan oleh TNBC. Penggunaan imunoterapi, khususnya checkpoint inhibitor telah memberikan dampak yang sangat signifikan terhadap kelangsungan hidup pasien TNBC. Maka dari itu, disusunlah model dinamika untuk membantu menganalisis pengaruh dari imunoterapi checkpoint inhibitor terhadap pertumbuhan tumor. Model tersebut mencakup interaksi antara sel tumor, sel imun, protein PD-L1 serta imunoterapi checkpoint inhibitor. Model matematika juga menunjukkan kondisi tumor bebas dan kondisi tumor besar. Hasil simulasi model dinamika menunjukkan bahwa model dapat mengeliminasi tumor dengan beberapa variasi dosis obat dan konsentrasi PD-L1 yang dilakukan. Variasi tersebut dapat meningkatkan efektivitas imunoterapi checkpoint inhibitor dengan dosis yang tepat dan diberikan saat konsentrasi PD-L1 masih sangat rendah. Analisis sensitivitas variasi parameter dilakukan untuk melihat parameter yang paling berpengaruh terhadap ukuran akhir tumor. Model simulasi dinamika ini diharapkan dapat dikembangkan lebih lanjut dengan memperhatikan beberapa parameter lain. Model dinamika yang diusulkan perlu adanya penyempuraan kembali melalui metode komputasi yang lebih kompatibel agar hasil analisisnya dapat lebih baik. In this study, a Triple Negative Breast Cancer (TNBC) dynamics model with the influence of immunotherapy is described. As much as 21.1% of the 22% mortality rate in Indonesia is caused by TNBC. The use of immunotherapy, especially checkpoint inhibitors, has had a very significant impact on the survival of TNBC patients. Therefore, a dynamics model was developed to help analyze the effect of checkpoint inhibitor immunotherapy on tumor growth. The model includes interactions between tumor cells, immune cells, PD-1 and PD-L1 proteins and checkpoint inhibitor immunotherapy. The mathematical model also shows the tumor-free condition and the large tumor condition. The simulation results of the dynamic model show that the model can eliminate tumors with several variations in drug dose and PD-L1 concentration performed. These variations can increase the effectiveness of checkpoint inhibitor immunotherapy with the right dose and given when the PD-L1 concentration is still very low. Sensitivity analysis of parameter variations was conducted to see which parameter has the most influence on the final tumor size. This dynamic simulation model is expected to be further developed by considering several other parameters. The proposed dynamics model needs to be refined through more compatible computational methods so that the analysis results can be better.
Collections
- UT - Physics [1227]
