| dc.contributor.advisor | Kustiyo, Aziz | |
| dc.contributor.author | Idin, Abdurrahim Ramadhan | |
| dc.date.accessioned | 2025-06-19T13:30:31Z | |
| dc.date.available | 2025-06-19T13:30:31Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/162617 | |
| dc.description.abstract | Jagung merupakan salah satu komoditas utama di Indonesia, namun
produktivitasnya sangat dipengaruhi oleh kondisi lingkungan dan cuaca. Fluktuasi
hasil panen jagung sering terjadi akibat perubahan iklim, seperti fenomena El
Niño yang memicu kekeringan dan keterlambatan musim tanam. Oleh karena itu,
pemilihan benih unggul yang tahan terhadap cekaman kekeringan menjadi sangat
penting, terutama di daerah dengan kondisi lahan kering seperti Nusa Tenggara
Timur. Metode identifikasi benih yang masih menggunakan pendekatan
tradisional, seperti pengukuran morfologi secara manual, dianggap kurang efisien
baik dari segi waktu maupun tenaga. Penelitian ini mengembangkan model
klasifikasi varietas jagung menggunakan Convolutional Neural Network (CNN)
dengan objek penelitian lima varietas yaitu NK-212, NK-7328, P-21, Pertiwi-2,
dan Pertiwi-6. Tiga arsitektur CNN dengan tingkat kompleksitas berbeda
dirancang dan diuji. Hasilnya, model terbaik yang terdiri dari tiga lapisan
konvolusi dan dua lapisan dense dengan dropout menunjukkan performa optimal,
mencapai akurasi 89,20% pada data pengujian. | |
| dc.description.abstract | Corn is one of the main commodities in Indonesia, but its productivity is
greatly influenced by environmental and weather conditions. Fluctuations in corn
harvests often occur due to climate change, such as the El Niño phenomenon
which triggers drought and delays in the planting season. Therefore, the selection
of superior seeds that are resistant to drought stress is very important, especially in
areas with dry land conditions such as East Nusa Tenggara. Seed identification
methods that still use traditional approaches, such as manual morphological
measurements, are considered less efficient in terms of time and energy. This
study developed a corn variety classification model using Convolutional Neural
Network (CNN) with five varieties as research objects, namely NK-212,
NK-7328, P-21, Pertiwi-2, and Pertiwi-6. Three CNN architectures with different
levels of complexity were designed and tested. As a result, the best model
consisting of three convolutional layers and two dense layers with dropout
showed optimal performance, achieving an accuracy of 89.20% on the test data. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Identifikasi Varietas Jagung Menggunakan Metode Convolutional Neural Network | id |
| dc.title.alternative | Identification of Corn Varieties Using the Convolutional Neural Network Method | |
| dc.type | Skripsi | |
| dc.subject.keyword | cekaman kekeringan | id |
| dc.subject.keyword | Jagung | id |
| dc.subject.keyword | convolutional neural network | id |
| dc.subject.keyword | identifikasi benih | id |