View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Algoritma Pembelajaran Mesin Pendeteksi Wana-Tani di Kecamatan Lore Barat, Kabupaten Poso, Provinsi Sulawesi Tengah

      Thumbnail
      View/Open
      Cover (366.6Kb)
      Fulltext (2.574Mb)
      Lampiran (286.7Kb)
      Date
      2025
      Author
      Diefda, Genthamaury
      Jaya, I Nengah Surati
      Metadata
      Show full item record
      Abstract
      Penelitian ini menjelaskan tentang pembangunan algoritma pohon keputusan (decision tree) pembelajaran mesin pendeteksian wana-tani untuk mengidentifikasi perhutanan sosial yang terdapat di Kecamatan Lore Barat. Pembangunan model algoritma dan deteksi wana-tani dilakukan dengan menggunakan citra SPOT 7 dalam menduga tutupan lahan dan membangun data tambahan melalui peubah indeks vegetasi (NDVI, NRGI, VARI) serta data geososio biofisik (slope, elevasi, pemukiman, jalan, sungai). Hasil dari penelitian ini berupa model algoritma terbaik dalam melakukan klasifikasi tutupan lahan untuk mendeteksi wana-tani dengan parameter terbaik berupa information gain. Parameter ini menghasilkan model algoritma terbaik tanpa pre-prunning dan tanpa prunning dengan maximal depth sebesar 10, minimal leaf size sebesar 60, pre-prunning alternative sebesar 20, dan minimal size for split sebesar 41. Kajian ini menghasilkan overall accuracy sebesar 92% dan kappa accuracy sebesar 90% dengan prediksi kelas agroforestri sebesar 77.2% untuk user accuracy dan 75.5% untuk kappa accuracy.
       
      This research describes the development of a decision tree algorithm for machine learning wana-tani detection to identify social forestry in West Lore District. The development of algorithm model and wana-tani detection were conducted using SPOT 7 imagery in estimating land cover and using additional data through vegetation index variables (NDVI, NRGI, VARI) and geosocio-biophysical data (slope, elevation, settlement, road, river). The result of this research provided the best algorithm model in performing land cover classification to detect wana-tani with the best parameter in the form of information gain. This parameter produced the best algorithm model without pre-prunning and without prunning with a maximum depth of 10, minimum leaf size of 60, pre-prunning alternative of 20, and minimum size for split of 41. This research produced an overall accuracy of 92% and kappa accuracy of 90% with a prediction of agroforestry class of 77.2% for user accuracy and 75.5% for kappa accuracy.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/161249
      Collections
      • UT - Forest Management [3197]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository