View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Business Intelligence untuk Prediksi Produksi Padi Menggunakan Metode Single Exponential Smoothing

      Thumbnail
      View/Open
      Cover (471.1Kb)
      Fulltext (1.551Mb)
      Lampiran (386.7Kb)
      Date
      2024
      Author
      Sya'diah, Alfiyyatus
      Neyman, Shelvie Nidya
      Metadata
      Show full item record
      Abstract
      Seiring dengan era digital, pengelolaan data menjadi kunci dalam pengambilan keputusan yang efektif. Metode Single Exponential Smoothing dipilih karena kemampuannya dalam meramalkan produksi jangka panjang dan menengah dengan tingkat operasional yang rendah. dengan memanfaatkan Business intelligence, terutama Power BI dari microsoft, proses analisis dan penyajian prediksi produksi padi dapat dilakukan secara cepat. Dashboard ini dirancang untuk menyajikan visualisasi yang informatif berdasarkan data produksi padi, memungkinkan para pengambil keputusan di Kementerian Pertanian Republik Indonesia untuk membuat keputusan yang lebih akurat dan efektif. Dashboard yang dikembangkan mampu memprediksi padi sebesar 56.934.372 ton. Penggunaan metode peramalan yang diterapkan dalam dashboard menunjukkan Tingkat akurasi yang baik dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 1,892% dan Mean Absolute Deviation (MAD) sebesar 1,088 ton.
       
      Along with the digital era, data management is key to effective decisionmaking. The Single Exponential Smoothing method was chosen for its ability to forecast long-and medium-term production with low operational levels. By utilizing Businessintelligence, especially Power BI from Microsoft, the process of analyzing and presenting rice production predictions can be done quickly. The dashboard is designed to provide informative visualizations based on rice production data, enabling decision-makers in Kementerian Pertanian Republik Indonesia to make more accurate and effective decisions. The dashboard developed can predict rice of 56,934,372 tons. The forecasting method applied in the dashboard shows a good level of accuracy with a Mean Absolute Percentage Error (MAPE) value of 1.892% and a Mean Absolute Deviation (MAD) of 1.088 tons.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160368
      Collections
      • UT - Software Engineering Technology [182]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository