View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penyelesaian Travelling Salesman Problem Menggunakan Algoritma Grey Wolf Optimization

      Thumbnail
      View/Open
      Cover (359.7Kb)
      Fulltext (1.211Mb)
      Lampiran (258.0Kb)
      Date
      2024
      Author
      Anisa, : Zahra Fahira
      Silalahi, Bib Paruhum
      Mayyani, Hidayatul
      Metadata
      Show full item record
      Abstract
      Salah satu permasalahan yang sering terjadi dalam bidang pendistribusian barang atau jasa, terutama dalam masalah pengoptimalan rute pengirimannya adalah Travelling Salesman Problem (TSP). Travelling Salesman Problem merupakan suatu permasalahan dalam menentukan rute terpendek, di mana seorang salesman harus mengunjungi setiap kota tepat satu kali, dimulai dari kota awal dan berakhir kembali ke kota awal tersebut. Dalam penelitian ini, TSP akan diselesaikan menggunakan algoritma meta-heuristik yaitu Grey Wolf Optimization (GWO). Selain itu, solusi akhir yang diperoleh akan dibandingkan dengan beberapa algoritma lainnya di antaranya adalah Branch and Bound, Ant Colony Optimization, Bee Colony Optimization, dan Simulated Annealing. Berdasarkan hasil percobaan, algoritma GWO menunjukkan kinerja yang lebih baik dengan solusi yang mendekati optimal dibandingkan algoritma lainnya.
       
      One of the common problems in the field of goods or service distribution, especially in optimizing delivery routes, is the Travelling Salesman Problem (TSP). The Travelling Salesman Problem is a problem of determining the shortest route, where a salesman must visit each city exactly once, starting and ending at the same city. In this study, TSP will be solved using a meta-heuristic algorithm known as Grey Wolf Optimization (GWO). Furthermore, the final solution obtained will be compared with several other algorithms, including Branch and Bound, Ant Colony Optimization, Bee Colony Optimization, and Simulated Annealing. Based on the experiment results, the GWO algorithm shows better performance with a solution that is close to optimal compared to other algorithms.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160332
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository