View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Soil Science and Land Resources
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Soil Science and Land Resources
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Gulma pada Citra Drone Berbasis Klasifikasi Random Forest dan Support Vector Machine

      Thumbnail
      View/Open
      Cover (796.1Kb)
      Fulltext (2.911Mb)
      Lampiran (266.2Kb)
      Date
      2024
      Author
      zakiyah, syakira rizqa
      Ardiansyah, Muhammad
      Munibah, Khursatul
      Metadata
      Show full item record
      Abstract
      Gulma pada pertanaman padi di sawah salah satu faktor penyebab terjadinya penurunan produksi padi. Pemanfaatan teknologi Unmanned Aerial Vehicle (UAV) atau drone dengan kamera multispektral memungkinkan akuisisi citra beresolusi spasial tinggi yang merupakan solusi inovatif dalam mendeteksi gulma secara efisien. Penelitian ini bertujuan untuk mengidentifikasi pola reflektan gulma dan padi, membandingkan hasil klasifikasi Support Vector Machine (SVM) dan Random Forest (RF) dalam memetakan sebaran gulma pada petak sawah percobaan, dan menganalisis sebaran gulma pada petak sawah kondisi basah dan kering. Hasil analisis menunjukkan perbedaan pola nilai reflektan gulma dan padi pada kanal tepi merah (Red-edge) dan inframerah dekat (NIR), dengan reflektansi gulma lebih tinggi. Pendekatan SVM dan RF mampu mengidentifikasi dan memetakan gulma dengan akurasi tinggi, yaitu diatas 90%, dengan distribusi gulma lebih dominan pada sawah dengan kondisi kering yang mencapai luasan sebesar 10% untuk SVM dan 5% untuk RF, sedangkan pada sawah dengan kondisi basah distribusi gulma hanya sebesar 3% pada SVM dan 2% pada RF.
       
      Weeds in rice fields are one of the factors causing a decrease in rice production. The utilization of Unmanned Aerial Vehicle (UAV) or drone technology with multispectral cameras enables the acquisition of high spatial resolution imagery which is an innovative solution in detecting weeds efficiently. This study aims to identify the reflectance patterns of weeds and rice, compare the classification results of Support Vector Machine (SVM) and Random Forest (RF) in mapping the distribution of weeds in experimental rice plots, and analyze the distribution of weeds in wet and dry rice plots. The analysis showed different patterns of reflectance values of weeds and rice in the red-edge and near infrared (NIR) channels, with higher reflectance of weeds. The SVM and RF approaches were able to identify and map weeds with high accuracy, above 90%, with weed distribution being more dominant in rice fields with dry condition reaching an area of 10% for SVM and 5% for RF, while in rice fields with wet condition weed distribution was only 3% in SVM and 2% in RF.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/160327
      Collections
      • UT - Soil Science and Land Resources [2822]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository