View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Matematika dan Simulasi Wabah Penyakit MERS-CoV

      Thumbnail
      View/Open
      Cover (476.1Kb)
      Fulltext (1.541Mb)
      Lampiran (386.8Kb)
      Date
      2024
      Author
      Hernawan, Banissa Fathimatuzzahra
      Sianturi, Paian
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Middle East Respiratory Syndrome Coronavirus (MERS-CoV) adalah penyakit menular yang menyerang saluran pernafasan diakibatkan oleh virus korona dan dapat menular melalui hewan maupun manusia. Pada penelitian ini akan dikaji model penyebaran penyakit MERS-CoV dengan merekonstruksi model, menentukan titik tetap, menganalisis kestabilannya, serta menentukan bilangan reproduksi dasar. Selanjutnya dilakukan simulasi numerik untuk melihat dinamika penyebaran penyakit MERS-CoV. Hasil analisis diperoleh dua titik tetap, yaitu titik tetap bebas penyakit dan titik tetap endemik. Analisis kestabilan titik tetap ditentukan dengan kriteria Routh-Hurwitz. Bilangan reproduksi dasar diperoleh dengan matriks next generation. Hasil simulasi menunjukkan bahwa perlunya meminimalkan kontak transmisi penyebaran penyakit MERS-CoV, memaksimalkan isolasi, serta meningkatan efektifitas pengobatan akan memiliki peranan penting dalam menurunkan jumlah individu terinfeksi pada populasi. Kata kunci: analisis kestabilan, bilangan reproduksi dasar, MERS-CoV, SEIR, simulasi numerik
       
      Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an infectious disease that attacks the respiratory tract caused by the corona virus and can be transmitted through animals and humans. In this study, the MERS-CoV disease spread model will be studied by reconstructing the model, determining the fixed point, analyzing its stability, and determining the basic reproduction number. The results of the analysis obtained two fixed points, namely disease-free fixed point and endemic fixed point. Analysis of the stability of fixed point is determined by the Routh-Hurwitz criterion. Simulation results indicate that he need to minimize contact transmission of MERS-CoV disease spread, maximize isolation, and increase the effectiveness of treatment will have an important role in reducing the number of infected individuals in the population. Keywords: analisis kestabilan, bilangan reproduksi dasar, MERS-CoV, SEIR, simulasi numerik
       
      URI
      http://repository.ipb.ac.id/handle/123456789/159617
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository