View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Optimasi Lokasi Fasilitas Vaksinasi

      Thumbnail
      View/Open
      Cover (329.5Kb)
      Fulltext (9.835Mb)
      Lampiran (3.132Mb)
      Date
      2024
      Author
      Marpaung, Yosef Felix Ygga
      Bukhari, Fahren
      Silalahi, Bib Paruhum
      Metadata
      Show full item record
      Abstract
      Penentuan lokasi suatu fasilitas dilakukan agar lokasi berada di posisi yang optimal sesuai kendala yang ada. Penelitian ini memformulasikan dan menyelesaikan model optimasi dalam penentuan lokasi fasilitas vaksinasi yang mempertimbangkan jarak menuju fasilitas, tingkat kepadatan penduduk, dan jumlah kasus terkonfirmasi COVID-19 di Kota San Juan, Filipina. Selain itu, optimasi dinamis juga dilakukan untuk memperbarui lokasi seiring waktu berdasarkan populasi yang belum divaksinasi. Kedua proses optimasi diformulasikan dengan model Integer Nonlinear Programming (INLP) dengan sebuah fungsi tujuan tunggal dan diselesaikan dengan metode algoritme genetika dengan bantuan bahasa pemrograman python. Hasil optimasi menunjukkan bahwa peningkatan jumlah fasilitas vaksinasi dapat memperpendek jarak tempuh rata-rata yang meningkatkan aksesibilitas dan memfokukan vaksinasi terutama di area dengan populasi padat dan tingkat kasus COVID-19 tinggi. Dalam optimasi dinamis, vaksinasi difokuskan di daerah yang belum menyelesaikan proses vaksinasi. Hal ini mampu mengefektifkan dan mengefisienkan proses berjalannya vaksinasi sesuai jumlah lokasi dan rentang periode waktu yang dapat ditentukan.
       
      Determining the optimal location of a facility is crucial to ensure its strategic positioning within existing constraints. This research aims to formulate and solve an optimization model for locating vaccination facilities, considering distance, population density, and the number of confirmed COVID-19 cases in San Juan City, Philippines. Additionally, dynamic optimization is performed to update facility locations over time based on the unvaccinated population. Both processes are modeled using Integer Nonlinear Programming (INLP) with a single objective function and solved using a genetic algorithm implemented in Python. The results indicate that increasing the number of vaccination facilities decreases average travel distance, improving accessibility, and concentrating efforts in densely populated areas and high COVID-19 cases. In dynamic optimization, facility locations are adjusted over specific periods, focusing on areas with incomplete vaccination coverage. This approach enhances the efficiency and effectiveness of the vaccination process by optimizing the number of facilities and time periods involved.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/159455
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository