View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Model Deteksi dan Pembacaan Pelat Nomor Kendaraan untuk Gerbang Parkir Otomatis Menggunakan YOLOv8 dan EasyOCR

      Thumbnail
      View/Open
      Cover (332.4Kb)
      Fulltext (1.479Mb)
      Lampiran (106.7Kb)
      Date
      2024
      Author
      Damarjati, Ahmad Ardra
      Neyman, Shelvie Nidya
      Mushthofa
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan untuk mengembangkan sistem deteksi dan pembacaan Pelat nomor kendaraan secara otomatis untuk digunakan pada gerbang parkir otomatis. Sistem ini memanfaatkan algoritma YOLOv8 untuk deteksi pelat nomor dan EasyOCR untuk pengenalan karakter. Data yang digunakan dalam pelatihan model terdiri dari gambar pelat nomor kendaraan yang diambil dari berbagai sumber. Model YOLOv8 dilatih menggunakan metode transfer learning dengan data pelat nomor Indonesia, sementara EasyOCR digunakan untuk mengenali karakter pada pelat nomor dengan akurasi tinggi. Hasil evaluasi menunjukkan bahwa model yang dikembangkan mampu mendeteksi pelat nomor dengan akurasi 96,85% dan melakukan pengenalan karakter dengan tingkat kesalahan 11,0%. Sistem ini diharapkan dapat memberikan kontribusi signifikan dalam pengelolaan parkir otomatis di Indonesia, serta membuka peluang untuk pengembangan lebih lanjut dalam teknologi pengenalan pelat nomor.
       
      This research aims to develop an automatic vehicle number plate detection and reading system for use at automatic parking gates. This system utilizes the YOLOv8 algorithm for number plate detection and EasyOCR for character recognition. The data used in model training consists of images of vehicle license plates taken from various sources. The YOLOv8 model was trained using the transfer learning method with Indonesian number plate data, while EasyOCR was used to recognize characters on number plates with high accuracy. The evaluation results show that the developed model is able to detect number plates with an accuracy of 96.85% and perform character recognition with an error rate of 11.0%. This system is expected to make a significant contribution to automated parking management in Indonesia, as well as opening up opportunities for further development in number plate recognition technology.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/159425
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository