View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengaruh Interaksi Populasi Patogen terhadap Kestabilan Model Matematika Penyebaran Penyakit Campak

      Thumbnail
      View/Open
      Cover (577.1Kb)
      Fulltext (6.463Mb)
      Lampiran (4.239Mb)
      Date
      2024
      Author
      Febriyanti, Fatika Rahma
      Jaharuddin
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Penyakit campak merupakan penyakit yang disebabkan oleh morbillivirus dan sangat menular. Tingkat penyebaran penyakit campak dari satu individu ke individu lain sangat tinggi, yaitu lebih dari 90%. Penyakit campak dapat menyebar dengan cepat melalui udara, terutama melalui percikan air liur saat orang yang terinfeksi batuk atau bersin. Penelitian ini bertujuan untuk merekonstruksi model matematika pada penyebaran penyakit campak, menganalisis kestabilan titik tetap, melakukan analisis sensitivitas, dan melakukan simulasi numerik. Analisis kestabilan pada titik tetap bebas penyakit menunjukkan bahwa kestabilan lokal terjadi jika bilangan reproduksi dasar kurang dari 1. Sementara itu, pada titik tetap endemik, kestabilan lokal terjadi jika bilangan reproduksi dasar lebih besar dari 1. Hasil simulasi numerik menunjukkan bahwa untuk menekan penyebaran penyakit campak, dapat dilakukan dengan peningkatan laju vaksinasi individu rentan atau mengurangi individu yang terinfeksi.
       
      Measles is a disease caused by a morbillivirus and is highly contagious. The transmission rate of measles from one individual to another is very high, at more than 90%. Measles can spread rapidly through the air, especially through respiratory droplets when an infected person coughs or sneezes. This study aims to reconstruct a mathematical model for the spread of measles, analyze the stability of equilibrium points, conduct sensitivity analysis, and perform numerical simulations. The stability analysis of the disease-free equilibrium point shows that local stability occurs when the basic reproduction number is less than 1. Meanwhile, at the endemic equilibrium point, local stability occurs if the basic reproduction number is greater than 1. Numerical simulations were conducted to illustrate population dynamics under the various parameter changes. The results of numerical simulations indicate that controlling the spread of measles can be achieved by increasing the vaccination rate among vulnerable individuals or reducing the number of infected individuals.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/159098
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository