Show simple item record

dc.contributor.advisorFaqih, Akhmad
dc.contributor.authorFajar, Rashad Muhammad
dc.date.accessioned2024-08-21T07:55:19Z
dc.date.available2024-08-21T07:55:19Z
dc.date.issued2024
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/158107
dc.description.abstractPerkembangan deep learning, khususnya Long Short-Term Memory (LSTM) telah membuka peluang baru dalam prediksi iklim, termasuk prediksi awal musim hujan. Penelitian ini bertujuan untuk mengembangkan model prediksi awal musim hujan di Pulau Kalimantan dengan memanfaatkan keunggulan dari LSTM menggunakan data luaran Global Circulation Model (GCM), dan mengevaluasi model tersebut. Data GCM yang digunakan berasal dari data North American Multi Model Ensemble (NMME) dengan issued time bulan Januari-Mei dan lead time bulan Agustus-Oktober. Penelitian ini berhasil mengembangkan prediksi awal musim hujan di Pulau Kalimantan menggunakan LSTM. Hasil evaluasi pemodelan tergolong rendah dan moderat dengan korelasi Pearson (r) pada rentang 0,24–0,47 dan RMSE pada 24,9-27,5. Hasil juga menunjukkan nilai standar deviasi ternormalisasi yang kecil di bawah 1, menandakan nilai prediksi model memiliki variasi yang lebih kecil dibandingkan variasi observasi, sehingga model kurang mampu menangkap nilai ekstrem pada data aktual. Hasil skill score pada issued time bulan Januari memiliki hasil terbaik pada model NCEP-CFSv2 di wilayah tengah Pulau Kalimantan dan pada issued time bulan Februari-Mei cenderung lebih baik pada model CanSIPS-IC3 di sebagian besar Pulau Kalimantan.
dc.description.abstractThe development of deep learning, especially Long Short-Term Memory (LSTM) has opened up new opportunities in climate prediction, including early rainy season prediction. This study aims to develop a prediction model for the early rainy season on Kalimantan Island by utilizing the advantages of LSTM using Global Circulation Model (GCM) data, and to evaluate the prediction model. The GCM data is obtained from North American Multi Model Ensemble (NMME) data output with issued time in January-May and lead time in August-October. This research successfully developed a prediction of the beginning of the rainy season on the island of Kalimantan using LSTM. The model evaluation results are low and moderate with Pearson correlation (r) in the range of 0.24-0.47 and RMSE at 24.9- 27.5. The result also shows a small normalized standard deviation value below 1, where the predicted data from the model has less variation than the actual variation, including the model weakness in capturing extreme values shown in the actual data. The skill score results at the issued time in January have the best results in the NCEP-CFSv2 model in the central region of Kalimantan Island and at the issued time in February-May tend to be better in the CanSIPS-IC3 model in most of Kalimantan Island.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePengembangan Model Prediksi Awal Musim Hujan menggunakan Metode Long Short-Term Memory di Pulau Kalimantan, Indonesiaid
dc.title.alternativeDevelopment of Early Rainy Season Prediction Model Using Long Short-Term Memory Method in Kalimantan Island, Indonesia
dc.typeSkripsi
dc.subject.keyworddeep learningid
dc.subject.keywordclimateid
dc.subject.keywordevaluationid
dc.subject.keywordvariationid
dc.subject.keywordissued timeid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record