View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kestabilan Model Penyebaran Penyakit Leptospirosis Tipe SIRS

      Thumbnail
      View/Open
      Cover (1.656Mb)
      Fulltext (4.298Mb)
      Lampiran (2.302Mb)
      Date
      2024
      Author
      ANDRIANI, RIZKA DWI
      Sianturi, Paian
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Leptospirosis merupakan penyakit yang disebabkan oleh bakteri Leptospira yang dapat menularkan ke manusia dan hewan. Model SIRS dalam populasi manusia dan SI dalam populasi tikus digunakan untuk mempelajari analisis kestabilan dan simulasi numerik dalam dinamika penyebaran penyakit Leptospirosis. Hasil analisis diperoleh dua titik tetap, yaitu titik tetap bebas penyakit dan titik tetap endemik. Titik tetap bebas penyakit akan stabil jika ℛ! < 1 dan titik tetap endemik akan stabil jika ℛ! > 1. Hasil numerik menunjukkan bahwa kenaikan tingkat kematian alami tikus dan penurunan tingkat penularan dari tikus rentan ke tikus terinfeksi akan mengakibatkan nilai ℛ! menurun. Upaya untuk menurunkan laju penularan penyakit dapat dilakukan dengan menaikkan tingkat kematian alami tikus dan menurunkan tingkat penularan dari tikus rentan ke tikus terinfeksi.
       
      Leptospirosis is a disease caused by Leptospira bacteria that can transmit to humans and animals. SIRS model in human population and SI model in rat population are used to study the stability analysis and numerical simulation in the dynamics of Leptospirosis disease spread. The analysis results obtained two fixed points, which are disease-free fixed point and endemic fixed point. The disease-free fixed point will be stable if ℛ! < 1 and the endemic fixed point will be stable if ℛ! > 1. Numerical results show that an increase in the natural mortality rate of rats and a decrease in the transmission rate from susceptible rats to infected rats will result in a decrease in the ℛ! value. Measures to reduce the rate of disease transmission can be made by increasing the natural mortality rate of rats and decreasing the transmission rate from susceptible rats to infected rats.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157861
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository