View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Sistem Lampu Otomatis Berbasis IoT dengan Menggunakan ESP32 dan Sensor Cahaya di ICT IPB

      Thumbnail
      View/Open
      Cover (341.3Kb)
      Fulltext (934.8Kb)
      Lampiran (94.81Kb)
      Date
      2024
      Author
      Achmad, Rafi Febrian
      Widodo, Bayu
      Metadata
      Show full item record
      Abstract
      IPB ingin meningkatkan efisiensi dan kenyamanan pengguna serta mengurangi pemborosan energi listrik dengan mengadopsi teknologi Internet of Things (IoT) pada sistem lampu yang saat ini masih dioperasikan dengam cara manual. Proyek ini bertujuan untuk merancang sistem lampu otomatis berbasis IoT untuk mengatur lampu berdasarkan kondisi lingkungan di ICT IPB dengan mengimplimentasikan ESP32 dan sensor. Metode yang digunakan secara berurutan yaitu tahap analisis masalah dan kebutuhan, tahap perancangan sistem, tahap implementasi, dan tahap pengujian. Dengan melakukan pengujian alat dan pengolahan data, diperoleh persentase akurasi alat mencapai 99.25% dengan nilai mean variabel intensitas cahaya 416,2 dan standar deviasi 17,8.
       
      IPB wants to increase user efficiency and comfort and reduce the waste of electrical energy by adopting Internet of Things (IoT) technology in lighting systems that are still operated manually. This project aims to design an IoT-based automatic lighting system to regulate lights based on environmental conditions at ICT IPB by implementing ESP32 and sensors. The methods used sequentially are the problem and needs analysis stage, system design stage, implementation stage, and testing stage. By testing the tool and processing the data, the percentage of tool accuracy reached 99.25%, a mean value of the light intensity variable of 416.2, and a standard deviation of 17.8.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157282
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository