View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Geophysics and Meteorology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Geophysics and Meteorology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Model Prediksi Panjang Musim Hujan di Pulau Jawa Menggunakan Convolutional Neural Network

      Thumbnail
      View/Open
      Cover (657.1Kb)
      Fulltext (3.949Mb)
      Lampiran (1014.Kb)
      Date
      2024
      Author
      Parwoko, Iqbal Dony
      Faqih, Akhmad
      Metadata
      Show full item record
      Abstract
      Pertanian di Pulau Jawa sangat dipengaruhi oleh variabilitas iklim musiman. Prediksi panjang musim hujan sangat penting untuk perencanaan pertanian dan pengelolaan sumber daya air. Studi ini bertujuan mengembangkan model prediksi panjang musim hujan di Pulau Jawa menggunakan Convolutional Neural Network dan mengevaluasi model tersebut. Prediktor yang digunakan adalah empat data curah hujan luaran North American Multi-Model Ensemble dengan issued time Bulan Juni, Juli, Agustus, dan September serta lead time Bulan September hingga Mei. Penelitian ini berhasil mengembangkan prediksi panjang musim hujan di Pulau Jawa menggunakan CNN. Korelasi Pearson bernilai 0,38 hingga 0,51 dengan nilai korelasi tinggi terjadi pada issued time Bulan Juni di Jawa Timur. RMSE bernilai 3,29 hingga 3,80 dengan nilai berada di Jawa Barat bagian selatan. Standar deviasi ternormalisasi bernilai 0,68 hingga 0,94 dengan nilai terbaik berada di Jawa Barat dan Jawa Tengah. Model memiliki kemampuan moderat dalam menangkap hubungan linear antara data aktual dan prediksi tetapi kurang dalam menangkap nilai ekstrem dari data aktual. Hasil skill score cenderung merata di seluruh pulau dengan model CanSIPS-IC3 memiliki skill yang terbaik. Perbandingan panjang musim hujan menunjukkan bahwa prediksi model cenderung mengikuti pola aktualnya tetapi terdapat beberapa perbedaan nilai prediksi yang overestimate ataupun underestimate daripada nilai aktualnya.
       
      Agriculture on Java Island is highly influenced by seasonal climate variability. Predicting the length of the rainy season is crucial for agricultural planning and water resource management. This study aims to develop a rainy season length prediction model in Java Island using a convolutional neural network and evaluate the model. The predictors used are four rainfall data outputs from the North American Multi-Model Ensemble with issued times in June, July, August, and September and lead times from September to May. This research successfully developed a rainy season length prediction model in Java Island using a CNN. Pearson correlation values ranged from 0.38 to 0.51, with high correlation values occurring at the issued time of June in East Java. RMSE values ranged from 3.29 to 3.80, with the highest values located in the southern part of West Java. Normalized standard deviation values ranged from 0.68 to 0.94, with the best values found in West Java and Central Java. The model has a moderate ability to capture the linear relationship between actual and predicted data but is less effective in capturing extreme values from the actual data. The skill score results tend to be evenly distributed across the island, with the CanSIPS-IC3 model having the best skill. A comparison of the rainy season length shows that the model's predictions tend to follow the actual pattern, but there are some differences in predicted values that are overestimated or underestimated compared to the actual values.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157268
      Collections
      • UT - Geophysics and Meteorology [1717]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository