View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Sistem Pendeteksi Ikan Mati Menggunakan SSD MobileNetV2 dan Integrasi Telegram Bot untuk Notifikasi Real-time

      Thumbnail
      View/Open
      Cover (720.2Kb)
      Fulltext (1.932Mb)
      Lampiran (458.8Kb)
      Date
      2024
      Author
      Azkarillah, Muhammad Hilmy
      Novianty, Inna
      Ariyanto, Dodik
      Metadata
      Show full item record
      Abstract
      Kematian ikan secara massal pada umumnya disebabkan karena adanya tekanan abiotik dan/atau biotik. Pemantauan kematian ikan secara langsung dapat mencegah kematian massal ikan yang disebabkan karena proses dekomposisi. Solusi dari permasalahan tersebut yaitu dibuatkannya alat yang dapat mendeteksi kematian ikan di dalam akuarium secara real-time yang diterapkan pada Raspberry Pi 4, sehingga dapat memberikan peringatan berupa notifikasi melalui Telegram bot kepada pengguna ketika terjadi kematian ikan. Metode yang digunakan pada proyek ini yaitu analisis, perancangan, implementasi, dan pengujian. Dataset terdiri dari 1633 gambar yang diberi label dead dan live. Pembagian data untuk membuat model dibagi menjadi data latih (80%), data validasi (10%), dan data uji (10%), kemudian model dibuat menggunakan arsitektur SSD MobileNetV2. Dengan mengimplementasikan mAP score dan dengan IoU threshold sebesar 0.5, model menghasilkan mAP yaitu sebesar 87.24%. Output dari alat pendeteksi ikan mati yaitu berupa notifikasi pesan melalui Telegram bot kepada pengguna yang telah didefinisikan.
       
      Mass fish mortality is generally caused by abiotic and/or biotic stresses. Monitoring fish mortality directly can prevent mass fish mortality caused by the decomposition process. The solution to this problem is to create a tool that can detect fish death in an aquarium in real time implemented on a Raspberry Pi 4, so that it can provide warnings in the form of notifications via Telegram bot to users when fish death occurs. The methods used in this project are analysis, design, implementation, and testing. The dataset consists of 1633 images labeled dead and live. The data division for creating the model is divided into training data (80%), validation data (10%), and test data (10%), then the model is created using the MobileNetV2 SSD architecture. By implementing the mAP score and with an IoU threshold of 0.5, the model produces an mAP of 87.24%. The output of the dead fish detection tool is in the form of message notifications via Telegram bot to users who have been defined.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157080
      Collections
      • UT - Computer Engineering Tehcnology [173]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository