View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Kinerja Best Subset-Bayesian Model Averaging dan Metode Regularisasi untuk Prediksi Hotspot di Kalimantan

      Thumbnail
      View/Open
      Cover (288.4Kb)
      Fulltext (1.156Mb)
      Lampiran (170.5Kb)
      Date
      2024
      Author
      Hawari, Isnayni Feby
      Nurdiati, Sri
      Mangku, I Wayan
      Metadata
      Show full item record
      Abstract
      Luas wilayah hutan di Kalimantan terus berkurang akibat terjadinya kebakaran hutan dan lahan (karhutla). Penelitian-penelitian sebelumnya menunjukkan bahwa pencegahan karhutla di Kalimantan dapat dilakukan dengan memprediksi jumlah hotspot menggunakan machine learning berdasarkan indikator iklim. Penelitian ini bertujuan untuk membangun model regresi regularisasi dan Bayesian Model Averaging (BMA) berbasis model regresi polinomial berdasarkan hasil best subset selection. Model terbaik pada penelitian ini dipilih berdasarkan metrik evaluasi RMSE dan R^2. Selain itu, pengaruh normalisasi dan standardisasi juga diukur terhadap model yang dibangun. Hasilnya diperoleh kombinasi enam variabel prediktor terbaik dan diperoleh model terbaik yaitu BMA yang merupakan gabungan dari enam model regresi polinomial. Selain itu, penerapan normalisasi dan standardisasi data mempengaruhi nilai parameter seluruh model, tetapi hanya sedikit mempengaruhi hasil pengujian model. Dengan demikian, model BMA dengan data asli lebih dipilih karena nilai koefisiennya lebih mendekati nol dengan performa yang tidak jauh berbeda.
       
      The area of forests in Kalimantan continues decreasing due to forest and land fires. Previous studies have shown that the prevention of forest and land fires in Kalimantan can be implemented by predicting the number of hotspots using machine learning based on climate indicators. This study aims to build regularized regression models and Bayesian Model Averaging (BMA) based on polynomial regression models based on best subset selection. The best model in this study is assessed by using the RMSE and R^2 evaluation metrics. In addition, the effect of normalization and standardization is also evaluated on the constructed models. The results shows that a combination of the six best predictor variables is the best and it also shows that the best model is BMA which is a combination of the six polynomial regression models. In addition, the application of data normalization and standardization affects the parameter values of all models, but slightly affects the model testing results. Therefore, the BMA model with original data is more preferable because its coefficients are much closer to zero with similar performance.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/154917
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository