Formulasi Eksplisit untuk Determinan, Invers, dan Nilai Eigen Matriks Skew Circulant dengan Entri Barisan Fibonacci Berganti Tanda
Date
2024Author
Handoyo, Sapto Mukti
Guritman, Sugi
Mas'oed, Teduh Wulandari
Metadata
Show full item recordAbstract
Matriks skew circulant memiliki banyak terapan di berbagai bidang, seperti rekayasa jaringan. Determinan, invers, dan nilai eigennya sering dimanfaatkan dalam penerapannya. Tujuan penelitian ini adalah merumuskan determinan, invers, dan nilai eigen matriks skew circulant dengan entri barisan Fibonacci berganti tanda, mengonstruksi algoritmenya, dan menunjukkan efisiensi waktu komputasinya. Dalam penelitian ini, determinan dan invers dirumuskan secara sederhana menggunakan operasi baris dan kolom dasar dengan mengubah matriksnya menjadi matriks segitiga bawah dan diagonal yang ekuivalen, dan hasilnya dapat dituliskan hanya dalam satu teorema. Sedangkan, nilai eigen dirumuskan dengan menyederhanakan rumus umum nilai eigen matriks skew circulant yang memanfaatkan keistimewaan barisan Fibonacci berganti tanda dan sifat-sifat grup siklik. Kemudian, algoritme untuk semua formulasi tersebut dibuat. Secara komputasi, semua algoritme tersebut dapat bekerja dengan sangat cepat dan efisien. The skew circulant matrix is a type of matrix that has many applications in various fields, such as networks engineering. The determinant, inverse, and eigenvalues are often used in the application. The purpose of this research is to formulate the determinant, inverse, and eigenvalues of the skew circulant matrix with alternating Fibonacci sequence entries, construct the algorithms, and show the efficiency of computing time. In this research, the determinant and inverse are formulated simply using elementary row and column operations by changing the matrix into equivalent lower triangular and diagonal matrix, and the results can be written in just one theorem. Meanwhile, the eigenvalues are formulated by simplifying the general formula for the eigenvalues of the skew circulant matrix which exploits the specialty of the alternating Fibonacci sequence and the properties of cyclic groups. Then, algorithms for all these formulations are constructed. Computationally, all of these algorithms can work very fast and efficent.
Collections
- UT - Mathematics [1487]
