View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Formulasi Eksplisit untuk Determinan, Invers, dan Nilai Eigen Matriks Skew Circulant dengan Entri Barisan Fibonacci Berganti Tanda

      Thumbnail
      View/Open
      Cover (892.1Kb)
      Fullteks (2.086Mb)
      Date
      2024
      Author
      Handoyo, Sapto Mukti
      Guritman, Sugi
      Mas'oed, Teduh Wulandari
      Metadata
      Show full item record
      Abstract
      Matriks skew circulant memiliki banyak terapan di berbagai bidang, seperti rekayasa jaringan. Determinan, invers, dan nilai eigennya sering dimanfaatkan dalam penerapannya. Tujuan penelitian ini adalah merumuskan determinan, invers, dan nilai eigen matriks skew circulant dengan entri barisan Fibonacci berganti tanda, mengonstruksi algoritmenya, dan menunjukkan efisiensi waktu komputasinya. Dalam penelitian ini, determinan dan invers dirumuskan secara sederhana menggunakan operasi baris dan kolom dasar dengan mengubah matriksnya menjadi matriks segitiga bawah dan diagonal yang ekuivalen, dan hasilnya dapat dituliskan hanya dalam satu teorema. Sedangkan, nilai eigen dirumuskan dengan menyederhanakan rumus umum nilai eigen matriks skew circulant yang memanfaatkan keistimewaan barisan Fibonacci berganti tanda dan sifat-sifat grup siklik. Kemudian, algoritme untuk semua formulasi tersebut dibuat. Secara komputasi, semua algoritme tersebut dapat bekerja dengan sangat cepat dan efisien.
       
      The skew circulant matrix is a type of matrix that has many applications in various fields, such as networks engineering. The determinant, inverse, and eigenvalues are often used in the application. The purpose of this research is to formulate the determinant, inverse, and eigenvalues of the skew circulant matrix with alternating Fibonacci sequence entries, construct the algorithms, and show the efficiency of computing time. In this research, the determinant and inverse are formulated simply using elementary row and column operations by changing the matrix into equivalent lower triangular and diagonal matrix, and the results can be written in just one theorem. Meanwhile, the eigenvalues are formulated by simplifying the general formula for the eigenvalues of the skew circulant matrix which exploits the specialty of the alternating Fibonacci sequence and the properties of cyclic groups. Then, algorithms for all these formulations are constructed. Computationally, all of these algorithms can work very fast and efficent.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/152918
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository