View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Tutupan Lahan Menggunakan Citra Sentinel 2A Tahun 2021 di Kecamatan Bojong, Kabupaten Purwakarta

      Thumbnail
      View/Open
      Abstrak (84.26Kb)
      Pendahuluan (85.54Kb)
      Pembahasan (898.3Kb)
      Simpulan (75.16Kb)
      Full text (1.651Mb)
      Metode (402.2Kb)
      Date
      2023-12-28
      Author
      Situmorang, Dicky Christian
      Saleh, Muhammad Buce
      Rahaju, Sri
      Metadata
      Show full item record
      Abstract
      Sistem informasi geografis (SIG) menggunakan citra satelit merupakan salah satu cara untuk mengetahui informasi mengenai tutupan lahan secara cepat, akurat, dan efisien. Penelitian ini bertujuan untuk melakukan identifikasi tutupan lahan menggunakan analisis citra secara visual dan digital, serta memetakan tutupan lahan di Kecamatan Bojong, Kabupaten Purwakarta dengan citra Sentinel 2A tahun 2021. Metode yang digunakan adalah interpretasi citra secara visual dan digital menggunakan algoritma Maximum Likelihood. Hasil klasifikasi tutupan lahan di Kecamatan Bojong, Kabupaten Purwakarta menggunakan interpretasi citra secara visual diperoleh 8 kelas tutupan lahan dan menggunakan interpretasi citra secara digital diperoleh 9 kelas tutupan lahan. Hasil analisis akurasi klasifikasi visual lebih tinggi dibandingkan klasifikasi secara digital, namun klasifikasi secara digital dapat mengidentifikasi tutupan lahan lebih detail. Klasifikasi tutupan secara visual mendapatkan overall accuracy sebesar 92,00% dan kappa accuracy sebesar 90,42%, sedangkan klasifikasi secara digital mendapatkan overall accuracy sebesar 88,39% dan kappa accuracy sebesar 85,53%. Hal ini menujukkan bahwa pemetaan hasil klasifikasi secara visual maupun digital menggunakan citra Sentinel 2A tahun perekaman 2021 di Kecamatan Bojong, Kabupaten Purwakarta menghasilkan hasil yang baik.
       
      Geographic information system (GIS) using satellite imagery is one way to get information about land cover quickly, accurately and efficiently. This study aims to identify land cover using visual and digital image analysis, as well as map land cover in Bojong District, Purwakarta Regency with Sentinel 2A imagery. The method used is visual and digital image interpretation using the Maximum Likelihood algorithm. The results of land cover classification in Bojong District, Purwakarta Regency using visual image interpretation obtained 8 land cover classes and using digital image interpretation obtained 9 land cover classes. The results of the visual classification accuracy analysis are higher than digital classification, but digital classification can identify land cover in more detail. Visual classification of cover has an overall accuracy of 92.00% and a kappa accuracy of 90.42%. While digital classification has an overall accuracy of 88.39% and a kappa accuracy of 85.53%. This shows that visual and digital mapping of classification results using Sentinel 2A imagery 2021 recording year in Bojong District, Purwakarta Regency produce good result.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/133425
      Collections
      • UT - Forest Management [3204]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository