View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Segmentasi Semantik Berbasis Deep Learning untuk Mengidentifikasi Gulma pada Citra Multispektral Drone

      Thumbnail
      View/Open
      Cover (2.672Mb)
      Fullteks (39.41Mb)
      Lampiran (11.39Mb)
      Date
      2023
      Author
      Bawahir, Febri
      Herdiyeni, Yeni
      Metadata
      Show full item record
      Abstract
      Produksi karet di Indonesia memainkan peran penting dalam pendapatan devisa negara. Namun, pada tahun 2017-2021, industri karet di Indonesia menghadapi kesulitan akibat terjadi penurunan tingkat produksi sebesar 4,03% per tahun. Penyebab utama penurunan ini adalah serangan penyakit gugur daun karet yang disebabkan oleh patogen Pestalotiopsis sp. Pada perkebunan karet di Sembawa, terdapat beberapa bagian pohon karet yang telah mengalami defoliasi sehingga mengakibatkan pertumbuhan gulma di bawah pohon karet sakit. Pertumbuhan tersebut dapat mempengaruhi akurasi identifikasi kesehatan tanaman karet melalui remote sensing karena gulma memiliki warna visual yang serupa dengan tanaman karet sehat. Oleh karena itu, penelitian ini bertujuan untuk mengidentifikasi gulma guna membantu mengukur kesehatan tanaman karet secara tepat. Studi ini mengusulkan algoritma yang menggabungkan metode k-means++ clustering dan Segmentasi Semantik berbasis deep learning untuk mencapai segmentasi yang lebih akurat dan efisien dalam mengidentifikasi gulma. Algoritma yang diusulkan menunjukkan hasil yang menjanjikan dalam mengidentifikasi tanaman karet dan gulma dengan tingkat akurasi mencapai 95%.
       
      Rubber production in Indonesia plays an important role in the country's foreign exchange earnings. However, in 2017-2021, the rubber industry in Indonesia faced difficulties due to a decline in production levels of 4.03% per year. The main cause of this decline is the attack of rubber leaf fall disease caused by the pathogen Pestalotiopsis sp. In rubber plantations in Sembawa, there are several parts of rubber trees that have been defoliated, resulting in weed growth under diseased rubber trees. Such growth can affect the accuracy of rubber plant health identification through remote sensing because weeds have similar visual colors to healthy rubber plants. Therefore, this study aims to identify weeds to help measure the health of rubber trees precisely. This study proposes an algorithm that combines K-Means++ clustering and deep learning-based Semantic Segmentation methods to achieve more accurate and efficient segmentation in identifying weeds. The proposed algorithm shows promising results in identifying rubber plants and weeds with an accuracy rate of 95%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/124019
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository