View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Metode Regresi Random Forest dan Gradient Boosting pada Data Jumlah Hotspot di Kalimantan

      Thumbnail
      View/Open
      Cover (1.966Mb)
      Fullteks (10.19Mb)
      Lampiran (773.7Kb)
      Date
      2023
      Author
      Fallahi, Putri Afia Nur
      Nurdiati, Sri
      Bukhari, Fahren
      Metadata
      Show full item record
      Abstract
      Hotspot merupakan suatu indikator yang dapat digunakan sebagai pendeteksi awal terjadinya kebakaran hutan dan lahan (karhutla). Karhutla merupakan bencana alam yang rutin terjadi di Indonesia salah satunya di pulau Kalimantan. Tujuan penelitian ini yaitu mengonstruksi model regresi machine learning dengan metode Random Forest (RF) dan Gradient Boosting (GB) menggunakan data jumlah hotspot di beberapa titik wilayah Kalimantan dengan melakukan tuning pada hyperparameter model yakni n-estimators (banyaknya pohon yang dibangun), max-depth (maksimum kedalaman di tiap pohon), fungsi criterion (mengukur kualitas pemisahan suatu atribut) untuk RF, dan fungsi kerugian (metrik yang mengukur selisih nilai prediksi dengan data aktual selama proses training) untuk GB. Tuning pada metode random forest menggunakan fungsi criterion poisson menghasilkan nilai n-estimators sebesar 13 dan max-depth 28. Sementara itu, tuning pada metode gradient boosting dengan fungsi kerugian huber menghasilkan nilai n-estimators sebesar 53 dan max-depth 6. Perbedaan jumlah hotspot dari hasil keluaran model dengan data aktual diukur dengan nilai measurement Root Mean Square Error (RMSE). Metode random forest menghasilkan nilai RMSE sebesar 691.18, sedangkan gradient boosting menghasilkan RMSE sebesar 719.91.
       
      Hotspot is an indicator that can be used as early detector of forest and land fires (karhutla). Karhutla is natural disaster that occur regularly in Indonesia, especially in Kalimantan. This study aims to construct regression models using machine learning algorithms with random forest (RF) and gradient boosting (GB) methods by tuning the hyperparameters of model namely n-estimators (number of the tree to be built), max-depth (maximum depth in each tree), criterion function (measure the quality of separation of an attribute) for RF, and loss function (metric that measures the difference between the predicted and the actual value during the training process) for GB, by applying the number of hotspot data at several points in Kalimantan. Tuning with RF using poisson criterion resulted in n-estimators value of 13 and max-depth of 28. Meanwhile, tuning with GB using huber loss function resulted in n-estimators value of 53 and max-depth of 6. The differences of the number of hotspots between the output of the model and the actual data are measured using the Root Mean Square Error (RMSE). The RMSE value of the RF method is 691.18, while the RMSE value of GB method is 719.91.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/123112
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository