View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan, Invers, dan Nilai Eigen Matriks Circulant dengan Entri Barisan Geometri

      Thumbnail
      View/Open
      Cover (2.651Mb)
      Fullteks (9.711Mb)
      Lampiran (868.0Kb)
      Date
      2023
      Author
      Azhari, Mirza Farhan
      Mas'oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks Circulant adalah matriks segi yang disusun oleh operasi pergeseran sirkular kanan, yaitu pergeseran entri terakhir ke posisi utama disertai pergeseran semua entri lainnya ke posisi berikutnya. Entri dari matriks circulant dapat diisi dengan barisan bilangan apapun, salah satunya barisan bilangan geometri yang mana digunakan sebagai objek utama dari penelitian ini. Karya ilmiah ini bertujuan menurunkan formulasi sederhana dari nilai eigen, determinan, dan invers. Formulasi determinan diperoleh sebagai hasil kali semua elemen dari diagonal utama matriks diagonal setelah melakukan serangkaian operasi baris dasar dan kolom dasar. Sementara itu, formulasi invers diperoleh dari mengadaptasi langkah pada metode sebelumnya, dan kita peroleh C_(a,r,n)^(-1)=QD^(-1) P dengan P dan Q berturut-turut merupakan matriks yang diperoleh dari serangkaian operasi baris dasar dan kolom dasar tersebut yang dikenakan pada matriks indentitas I_n. Formulasi nilai eigen diperoleh dengan pendekatan konsep subgrup siklik dan geometri dari akar kesatuan ke-n.
       
      Circulant matrix is a square matrix composed by a right circular shift operation, namely the shift of the last entry to the first position followed by the shift of all other entries to the next position. The entry of a circulant matrix can be filled in any sequence of numbers, such as a geometric progression sequence which we use as the main object of this research. The goal of this research is to derive simple formulations for the eigenvalues, determinant, and inverse. The determinant formulation obtained as the product of all elements in the main diagonal matrix after applying a series of elementary row operations and elementary column operations. Meanwhile, the inverse formulation is obtained from adapted the previous method, and we get C_(a,r,n)^(-1)=QD^(-1) P where P and Q are matrices of a series of elementary row and column operations performed previously applied to identity matrix I_n, respectively. Formulation of eigenvalues is obtained from approaching the concept of cyclic subgroup and geometry representation of n^throot of unity.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/120465
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository