Show simple item record

dc.contributor.advisorJaharuddin
dc.contributor.advisorKusnanto, Ali
dc.contributor.authorAndareksa, Rimba
dc.date.accessioned2023-06-26T01:20:35Z
dc.date.available2023-06-26T01:20:35Z
dc.date.issued2023
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/120166
dc.description.abstractCorona Virus Disease atau COVID-19 adalah penyakit menular yang cukup serius bagi kesehatan masyarakat. COVID-19 merupakan penyakit yang disebabkan oleh virus SARS-CoV-2. Tujuan dari penelitian ini adalah menentukan serta menganalisis kestabilan dari titik tetap pada model SEIR COVID-19 dan melakukan simulasi numerik untuk mengkaji pengaruh vaksinasi. Analisis kestabilan titik tetap ditentukan dengan aturan Descartes dan fungsi Lyapunov. Bilangan reproduksi dasar (ℛ0) didapatkan dengan menggunakan matriks next generation. Hasil penelitian ini menunjukkan bahwa titik tetap bebas penyakit bersifat stabil asimtotik bilamana ℛ0 < 1. Simulasi numerik dilakukan dengan menggunakan software Mathematica 13.0. untuk mengetahui pengaruh parameter terhadap bilangan reproduksi dasar. Penurunan laju perpindahan populasi individu terpapar ke populasi individu terinfeksi mengakibatkan bilangan reproduksi dasar menurun. Kenaikan tingkat pemberian vaksinasi pada populasi individu rentan akan mengakibatkan bilangan reproduksi dasar menurun. Dengan mengontrol kedua parameter tersebut, penyebaran penyakit akan dapat dikendalikan.id
dc.description.abstractCorona Virus Disease or COVID-19 is an infectious disease that is quite serious for public health. COVID-19 is a disease caused by the SARS- CoV-2 virus. The purpose of this study is to determine and analyze the stability of equilibrium points in the COVID-19 SEIR model and conduct numerical simulations to assess the effect of vaccination. The analysis of equilibrium-point stability is determined by Descartes' rule and the Lyapunov function. The basic reproduction number (ℛ0) is obtained using the next generation matrix. The results of this study show that disease-free fixed points are asymptotic stable when ℛ0 < 1. Numerical simulations were carried out using Mathematica 13.0 software to find out the effect of parameters on the basic reproductive number. A decrease in population movement rate of the population of exposed individuals to the population of infected individuals causes a decrease in the basic reproductive number. An increase vaccination rate in vulnerable individual populations will causes a decrease in the basic reproductive number. By controlling parameters, the spread of the disease will be controlled.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleAnalisis Kestabilan Model SEIR COVID-19 dengan Pengaruh Vaksinasiid
dc.typeUndergraduate Thesisid
dc.subject.keywordstability analysisid
dc.subject.keywordbasic reproductive numbersid
dc.subject.keywordnumerical simulationid
dc.subject.keywordCOVID- 19id


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record