View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan singular value decomposition dan k-means untuk ekstrasi ciri citra tanah pada klasifikasi potensi nikel menggunakan support vector machine

      Thumbnail
      View/Open
      Fullteks (2.601Mb)
      Date
      2015
      Author
      Putra, Agung Prajuhana
      Buono, Agus
      Silalahi, Bib Paruhum
      Metadata
      Show full item record
      Abstract
      Potensi nikel pada tanah hasil eksplorasi (core) diperoleh melalui uji labolatorium menggunakan sinar X-Ray dengan waktu proses lama dan biaya besar. Penelitian ini bertujuan memanfaatkan citra core untuk mengetahui potensi nikel tanpa melalui uji labolatorium melainkan dengan teknik pengenalan pola sehingga dapat mempercepat proses klasifikasi dan menekan pengeluaran biaya. Dalam proses klasifikasi dibutuhkan ciri nikel yang tepat. Pemodelan ciri dalam klasifikasi nikel diperoleh melalui metode support vector machine (SVM) dengan kernel polynomial dengan nilai parameter 8 = 1, 2 dan radial basis function (RBF) dengan nilai parameter σ = 5, 15, 25, 35, 45, 55, 65, 75, 85, 95 pada ukuran citra 120x1200, 60x600. 12x120 pixel. Ekstrasi ciri yang digunakan adalah warna (RGB) dan tekstur (GLCM) dengan total jumlah 32 ciri dan dilakukan reduksi ciri melalui analisis biplot dengan pengembangan singular value decomposition dan K-Mean dengan nilai K = 4, 5, 6. 7. 8. 9. 10. Pembagian data latih dan data uji menggunakan 4 fold cross validation.
       
      Nickel potential at soil exploration (cores) obtained through laboratory testing using X-ray with a long and costly process. This study aims to harness the core image for determining the potential of nickel without laboratory testing, but instead using pattern recognition techniques that can accelerate the process of classification with low cost. The classification process takes proper nickel characteristics. Modeling characteristics in nickel classification obtained through the method of support vector machine (SVM) with polynomial kernel value parameter 8 = 1.2 and radial basis function (RBF) with value parameter σ = 5, 15, 25. 35, 45, 55, 65, 75. 85, 95 at 120x1200, 60x600, 12x120 pixels dimension. Extraction characteristics used are color (RGB) and texture (GLCM) with a total number of 32 traits. Characteristics reduction is done through the biplot analysis with the development of singular value decomposition and K-Means with a value of K = 4, 5, 6, 7, 8, 9, 10. The distribution of training data and testing data using a 4 fold cross validation.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/118569
      Collections
      • MT - Mathematics and Natural Science [4143]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository