Show simple item record

dc.contributor.advisorJaya, I Nengah Surati
dc.contributor.authorPrabowo, Christian Adi
dc.date.accessioned2023-02-01T07:45:15Z
dc.date.available2023-02-01T07:45:15Z
dc.date.issued2023-02-01
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/116537
dc.description.abstractStudi ini meneliti tentang citra asli dan citra sintetik, yaitu citra komposit, citra Principal Component Analysis, dan citra indeks vegetasi menggunakan algoritma Mesin Vektor Pendukung (SVM) dan Peluang Maksimum (MLC) dalam mendeteksi kerusakan dan pertumbuhan akibat adanya kebakaran hutan dan lahan. Tujuan penelitian ini adalah mengetahui metode dan citra yang optimal untuk deteksi perubahan vegetasi setelah kebakaran. Pendekatan klasifikasi terbimbing digunakan untuk mengklasifikasikan setiap citra dengan algoritma SVM dan MLC. Citra komposit dengan algoritma MLC menghasilkan KA sebesar 76,7% sedangkan pada algoritma SVM sebesar 84,3%. Untuk citra sintetik, citra PCA dengan algoritma MLC menghasilkan KA sebesar 79,4%, sedangkan pada algoritma SVM sebesar 80,7%. Citra indeks vegetasi pada algoritma MLC menghasilkan KA sebesar 80,4%, sedangkan pada algoritma SVM sebesar 84,0%. Nilai akurasi citrakomposit dengan algoritma SVM merupakan yang terbaik.id
dc.description.abstractThis study examined raw and synthetic images, i.e composite imagines, Principal Component Analysis imagines, and vegetation index imagines using Support Vector Machine (SVM) and Maximum Likelihood Classifier (MLC) algorithms in detecting damage and growth post-forest and land fires. The objective of this study was to find out the most optimal method and images for detecting vegetation changes after fires. The supervised classification approach was used to classify each imagery using the SVM and MLC algorithms. The raw images with the MLC algorithm provided a KA of 76,7% while the SVM algorithm was 84,3%. For synthetic images, the PCA images with the MLC algorithm produced a KA of 79,4%, while the SVM algorithm was 80,7%. The vegetation index images with the MLC algorithm produced a KA of 80,4%, while the SVM algorithm was 84,0%. The accuracy of composite imagery with the SVM algorithm was the highest.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titlePerbandingan Metode Mesin Vektor Pendukung dan Peluang Maksimum dalam Mendeteksi Kerusakan dan Pertumbuhan Pasca Kebakaran Hutan dan Lahan: Studi Kasus di Jambiid
dc.title.alternativeComparasion of Support Vector Machines and Maximum Likelihood Method for Detecting Damage and Growth Post-Forest and Land Fires: A Case Study in Jambiid
dc.typeUndergraduate Thesisid
dc.subject.keywordMaximum Likelihood Classifierid
dc.subject.keywordPrincipal Component Analysisid
dc.subject.keywordSupport Vector Machineid
dc.subject.keywordVegetation Indexid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record