View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Metode OBD dan OKD dalam Menentukan Determinan dan Invers Matriks Skew Circulant dengan Entri Bilangan Lucas

      Thumbnail
      View/Open
      Cover (644.5Kb)
      Fulltext (959.1Kb)
      Lampiran (624.0Kb)
      Date
      2022
      Author
      Tamba, Juwita Santiara
      Aliatiningtyas, Nur
      Mas'oed, Teduh Wulandari
      Metadata
      Show full item record
      Abstract
      Matriks skew circulant adalah matriks persegi dengan entri baris pertama (a_1,a_2,⋯,a_(n )) dan baris selanjutnya entri akan bergeser satu kolom ke arah kanan secara berurutan dengan seluruh entri sebelum diagonal utama akan bernilai negative. Entri-entri matriks skew circulant dapat menggunakan entri berbagai bilangan, salah satunya adalah bilangan Lucas. Karakteristik persamaan Lucas Number dapat digunakan untuk menentukan determinan dan invers matriks skew circulant. Pada karya ilmiah ini diformulasikan determinan dan invers matriks skew circulant dengan entri bilangan Lucas. Pembuktian formulasi determinan suatu matriks skew circulant diperoleh dari penerapan serangkaian operasi baris dasar sehingga diperoleh matriks segitiga atas, sedangkan pembuktian formulasi inversnya diperoleh berdasarkan sifat-sifat ekuivalensi matriks hasil kombinasi operasi baris dasar dan operasi kolom dasar.
       
      The Skew Circulant matrix is a square matrix with the first-row entry (a_1,a_2,⋯,a_n) and the next row of entry will shift one column to the right in sequence and all entry before the main diagonal will be negative. The entry of the skew circulant matrix can be an entry of various numbers, in this paper, we used the Lucas number. The characteristics of the Lucas Number can be used to determine the determinant and the inverse of the circulant skew matrix. In this research, the determinant and inverse of the skew circulant matrix with the Lucas numbers entries are formulated. The proof of the determinant formulation of the skew circulant matrix Lucas number is explained by applying a series of elementary row operation to get the upper triangular matrix, while the proof of the inverse formulation is explained on the equivalence properties of the matrix resulting from the combination of base row operations and base column operations.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/115021
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository