Show simple item record

dc.contributor.advisorBakhtiar, Toni
dc.contributor.advisorHanum, Farida
dc.contributor.authorAz-zahra, Putrie Syafira Urfiah
dc.date.accessioned2022-08-28T13:13:11Z
dc.date.available2022-08-28T13:13:11Z
dc.date.issued2022
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/114148
dc.description.abstractPermasalahan rute pendistribusian termasuk dalam vehicle routing problem (VRP). VRP memiliki beberapa variasi, salah satunya adalah vehicle routing problem with simultaneous delivery and pickup (VRPSDP). Pengaplikasian VRPSDP dapat dilihat dari pendistribusian tabung LPG 3 kg, di mana agen mengirim tabung terisi ke pangkalan dan mengambil tabung kosong dalam satu kali perjalanan. VRPSDP dapat diselesaikan menggunakan metode eksak dan heuristik. Pada penelitian ini, dijelaskan bagaimana algoritme genetika mampu menyelesaikan masalah perutean kendaraan untuk mendistribusikan tabung LPG 3 kg pada PT Anten Surya Saputra. Algoritme genetika merupakan salah satu metode heuristik yang mendekati solusi optimal melalui beberapa proses, di antaranya seleksi, kawin silang, dan mutasi. Hasilnya, algoritme genetika mampu memberikan solusi yang mendekati optimal dalam waktu yang relatif lebih singkat dibanding metode eksak, dengan rata-rata persentase selisih solusinya adalah 6.32%.id
dc.description.abstractDistribution route problems are included in the vehicle routing problem (VRP). VRP has several variations, one of them is the vehicle routing problem with simultaneous delivery and pickup (VRPSDP). The application of VRPSDP can be seen from the distribution of 3 kg LPG, where the agent sends filled tubes to the base and pick up empty tubes in one trip. VRPSDP can be solved using exact and heuristic methods. In this study, it is explained how the genetic algorithm is able to solve the problem of vehicle routing to distribute 3 kg LPG at PT Anten Surya Saputra. Genetic algorithm is a heuristic method that approaches the optimal solution through several processes, including selection, crossover, and mutation. As a result, genetic algorithms are able to provide sub-optimal solutions in a relatively shorter time than the exact method, with an average percentage of the difference in solutions is 6.32%.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titlePenyelesaian Vehicle Routing Problem with Simultaneous Delivery and Pickup: Studi Kasus Pendistribusian LPG 3 kgid
dc.typeUndergraduate Thesisid
dc.subject.keyword3 kg LPGid
dc.subject.keyworddistributionid
dc.subject.keywordgenetic algorithmid
dc.subject.keywordvehicle routing problemid
dc.subject.keywordVRPSDPid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record