Show simple item record

dc.contributor.advisorMushthofa
dc.contributor.authorAbdulbaaqiy, Chamdan L
dc.date.accessioned2022-08-02T07:17:04Z
dc.date.available2022-08-02T07:17:04Z
dc.date.issued2022
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/113092
dc.description.abstractSel kanker merupakan sel yang memiliki pertumbuhan tidak terkendali. Keberadaan sel kanker di dalam tubuh ditandai dengan adanya estrogen-reseptor- positif (ER+). Salah satu jenis kanker yang banyak diderita saat ini adalah kanker payudara. Sekitar 67% hasil tes kanker payudara menunjukkan adanya ER+ (estrogen-reseptor positif). Selanjutnya, penanganan kanker payudara ditentukan berdasarkan jenisnya, yaitu: Luminal A, Luminal B, basal-like, dan HER-2 enriched. Saat ini, biomarker yang umum digunakan untuk mendeteksi keberadaan sel kanker maupun jenis sel kankernya adalah PAM50. Namun, penelitian- penelitian terkait biomarker tetap terus dilakukan untuk meningkatkan hasil identifikasi. Penelitian ini menggunakan pendekatan berbasis jaringan (network) untuk menentukan biomarker potensial berdasarkan data Copy Number Alteration (CNA) dan ekspresi gen. Hasil pemilihan fitur tersebut dibandingkan dengan akurasi berbasis fitur PAM50 dari studi literatur. Dari hasil penelitian didapatkan bahwa fitur dari metode seleksi berbasis jaringan ini mampu menghasilkan performa yang sebanding dengan fitur PAM50 dan dapat menjadi alternatif untuk melakukan klasifikasi jenis kanker payudara.id
dc.description.abstractCancer is a disease characterized by uncontrolled cell growth. One of the characteristics of uncontrolled growth is the presence of estrogen-receptor-positive (ER+). About 67% of breast cancer test results have ER+. Breast cancer profiles are divided into 4 subtypes, namely: Luminal A, Luminal B, basal-like, and HER-2 enriched. Each category has a different effect on adjuvant chemotherapy. In this study, a network-based approach was used to select features/molecular biomarkers that have the potential to assist modeling and classifying sub-types of breast cancer. The molecular features used are Copy Number Alteration (CNA) and gene expression. The feature selection results were compared with the PAM50 feature- based accuracy from the literature study. The results indicate that the features selected from this network-based approach can obtain a comparable performance w.r.t. the original PAM50 features, and can be used as an alternative to perform breast cancer subtyping.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titlePemodelan berbasis Jaringan untuk Pengklasifikasian Kanker Payudara berdasarkan Data Molekularid
dc.title.alternativeNetwork-based Modeling for Breast Cancer Classification based on Molecular Dataid
dc.typeUndergraduate Thesisid
dc.subject.keywordbreast cancerid
dc.subject.keywordbreast cancer subtypesid
dc.subject.keywordclassificationid
dc.subject.keywordesterogen-receptorid
dc.subject.keywordnetwork-based modelid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record