View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Nilai Harapan Panjang Antrean pada Model M/M/2 dengan Server Heterogen dan Multiple Vacation

      Thumbnail
      View/Open
      Cover (523.6Kb)
      Fullteks (2.514Mb)
      Date
      2022
      Author
      Pebriansyah, Deni
      Mangku, I Wayan
      Sumarno, Hadi
      Metadata
      Show full item record
      Abstract
      Model M/M/2 dengan server heterogen dan multiple vacation adalah model antrean dengan proses kedatangan pelanggan mengikuti proses Poisson, laju pelayanan berdistribusi eksponensial, dan terdapat dua server heterogen dengan laju pelayanan berbeda. Vacation adalah periode acak tidak tersedianya server ketika tidak ada pelanggan dalam antrean pada saat penyelesaian layanan. Pada karya ilmiah ini, kedua server diperbolehkan mengambil periode vacation ketika server tidak menemukan pelanggan dalam antrean. Pada akhir periode vacation, pelayanan akan dimulai kembali jika terdapat setidaknya satu pelanggan dalam antrean. Jika tidak, server akan memasuki periode vacation kembali dan demikian seterusnya. Mekanisme seperti ini disebut sebagai multiple vacation. Ukuran kinerja yang dibahas yaitu nilai harapan panjang antrean. Langkah awal yang dilakukan yaitu menentukan rate matriks dan peluang stasioner model dengan metode solusi matriks geometrik. Kemudian, dengan dekomposisi stokastik bersyarat, diperoleh panjang antrean bersyarat. Akhirnya, dengan formulasi nilai harapan jumlah peubah acak yang saling bebas, diperoleh nilai harapan panjang antrean untuk model.
       
      The M/M/2 model with heterogeneous servers and multiple vacations is a queuing model with the customer arrival process following the Poisson process, the service rate is exponentially distributed, and there are two heterogeneous servers with different service rates. Vacation is a random period of server unavailability when there are no customers in line at the time of service completion. In this manuscript, each server is allowed to take a vacation when the server finds no customer waiting in the line. At the end of a vacation period, service will restart if there is at least one customer in the queue. Otherwise, the server will enter the vacation period again and so on. This mechanism is known as multiple vacation. The performance measure discussed is the expected value of the queueing length. The first step is to determine the rate matrix and the stationary probability of the model using the geometric matrix solution method. Then, by conditional stochastic decomposition, the conditional queue length is obtained. Finally, by using expected value formulation for sum of independent random variables, the expected value of the queueing length for the model is obtained.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112082
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository