View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Land Resource Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Land Resource Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Keparahan Penyakit Busuk Pangkal Batang pada Perkebunan Kelapa Sawit (Elaeis guineensis Jacq.) Menggunakan Sentinel-2

      Thumbnail
      View/Open
      Cover (556.6Kb)
      Fullteks (1.854Mb)
      Lampiran (557.4Kb)
      Date
      2021-09-07
      Author
      Handrian, Ramadhani Dwi
      Trisasongko, Bambang
      Panuju, Dyah
      Metadata
      Show full item record
      Abstract
      Kelapa sawit merupakan sektor perkebunan yang paling diunggulkan di Indonesia. Pemantauan perkebunan skala besar membutuhkan kekhususan dalam pengumpulan data dan analisisnya. Pengamatan cakupan perkebunan telah lama dilakukan dengan menggunakan data penginderaan jauh. Dengan berbagai masalah yang kompleks di perkebunan kelapa sawit, fokus riset umumnya berada dalam ranah perkiraan nutrisi daun dan untuk mengidentifikasi dampak penyakit tanaman. Fokus riset terakhir ini perlu menjadi perhatian, terutama pada penyakit busuk pangkal batang (BPB) yang disebabkan oleh cendawan Ganoderma boninense. Data multispektral Sentinel-2 yang tersedia secara bebas dimanfaatkan dalam penelitian ini. Identifikasi gejala awal dampak BPB dianalisis dengan menggunakan pendekatan pemelajaran mesin yang populer, yaitu random forest (RF). Data lapangan sebagai referensi dikumpulkan di Kebun Kelapa Sawit Cikasungka, Kabupaten Bogor. Dengan menggunakan model RF yang disetel (tuned), akurasi keseluruhan sebesar 82% diperoleh dengan lima target berbeda, yaitu empat tingkat keparahan dan pohon sehat. Penelitian ini juga menyimpulkan bahwa data tambahan seperti indeks vegetasi mampu membedakan tingkat keparahan penyakit meskipun tidak responsif. Penelitian ini menunjukkan bahwa model RF yang disetel sangat bermanfaat untuk membangun model pemelajaran mesin yang tepat dan adaptif.
       
      Oil palm remains the most prominent plantation sector in Indonesia. Monitoring large scale plantations requires specificity in datasets and approaches. Observing the extent of plantations has long been conducted using remotely-sensed data. With the complex issues in oil palm plantations, focus has also been made in investigating the utility of earth-observing satellites to estimate foliar nutrients and to identify the impact of plant diseases. The latter has been one of research interests, especially the basal stem rot (BSR) caused by Ganoderma boninense. This research proposed a freely-available, multispectral data of Sentinel-2, taking its advantage of frequent observation period. Preliminary identification of BSR impacts was examined by using a popular machine learning approach, i.e. random forests (RF). Ground data as the reference were collected in Cikasungka plantation, Bogor Regency. Using tuned RF model, overall accuracy was about 82% with five distinctive targets, i.e. four severity levels and the normal trees. Additional data, such as the vegetation index, were able to distinguish the severity of the disease, although they were irresponsive. This research suggests that tuned random forest model could be invaluable for constructing a proper machine learning model that adaptive to data feeds.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/109152
      Collections
      • UT - Land Resource Management [1732]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository