Determinan dan Invers Matriks Skew Circulant dengan Entri Lucas Numbers
Date
2021Author
Azzahra, Sonya Izati
Aliatiningtyas, Nur
Guritman, Sugi
Metadata
Show full item recordAbstract
Matriks skew circulant adalah matriks berukuran n×n yang setiap entri dari baris sebelumnya bergeser satu kolom ke kanan pada baris berikutnya secara berurutan diikuti dengan perubahan tanda pada semua entri dibawah diagonal utama, sehingga untuk mengetahui entri matriks skew circulant dapat dilihat dari satu baris matriks tersebut. Entri-entri pada matriks skew circulant dapat diisi dengan berbagai entri yang membentuk barisan bilangan, salah satunya yaitu Lucas Numbers. Karakteristik persamaan Lucas Numbers dapat digunakan untuk menentukan determinan dan invers matriks skew circulant. Pada karya ilmiah ini akan ditentukan determinan dan invers matriks skew circulant dengan entri Lucas Numbers dengan membuat matriks transformasi dan menggunakan beberapa teorema dan lemma. Skew circulant matrix is a matrix of size n×n where each entry from the previous row shifts one column to the right in the next row sequentially followed by a change in sign to all the elements below the main diagonal, so to find out the entries of the skew circulant can be seen from one row of the matrix. The entries in the skew circulant matrix can be filled with various entries that form a sequence of numbers, one of which is Lucas Numbers. Characteristics of the equation Lucas Numbers can be used to determine the determinant and inverse of the skew circulant matrix. In this scientific work, will be determined the determinant and inverse of skew circulant matrix with Lucas Numbers by constructing a transformation matrix and using several theorems and lemma.
Collections
- UT - Mathematics [1151]