View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Pengguna Twitter Terhadap Pandemi COVID-19 di Indonesia Menggunakan Algoritme Klasifikasi Multinomial Naive Bayes

      Thumbnail
      View/Open
      Cover (761.0Kb)
      Fullteks (4.474Mb)
      Lampiran (575.8Kb)
      Date
      2021
      Author
      Ahmad, Nabil
      Wijaya, Sony Hartono
      Metadata
      Show full item record
      Abstract
      Twitter sebagai situs jejaring sosial memiliki keunikan di mana fokusnya adalah berbagi pendapat dan informasi daripada interaksi sosial timbal-balik. Pada Maret 2020 WHO mengumumkan COVID-19 sebagai pandemi. Media sosial membuat pertukaran informasi dan opini pada masa pandemi berjalan dengan cepat. Dalam opini publik ini terdapat sentimen masyarakat. Analisis sentimen pada masa pandemi perlu dilakukan untuk memperlambat penyebaran virus COVID-19 dan mengurangi beban pada sistem kesehatan. Maka, perlu sebuah model yang dapat memprediksi bagaimana sentimen masyarakat terhadap COVID-19. Pengumpulan opini publik dilakukan melalui media sosial Twitter menggunakan bahasa Indonesia. Tweet kemudian diberikan label secara otomatis menggunakan library polyglot pada Python 3. Model dibangun menggunakan algoritme klasifikasi Multinomial Naïve Bayes dengan 10-fold cross validation. Data yang digunakan dalam penelitian ini adalah data tweet berbahasa Indonesia dari tanggal 2 Maret hingga 9 November 2020. Model berhasil memprediksi sentimen tweet dengan akurasi 67,66% dan nilai f1-score untuk kelas negatif 0,7184, kelas netral 0,5538, dan kelas positif 0,7308.
       
      Twitter as a social network site has a uniqueness where its focus is to share opinions and information instead of reciprocal social interaction. In March 2020 WHO announced the COVID-19 pandemic. Social media makes information and opinion trading during the pandemic fast. In these public opinions, there is public sentiment. Sentiment analysis during the pandemic is necessary to slow down the spread of the COVID-19 virus and to reduce the strain on the healthcare system. Therefore, there needs to be a model that can predict the public sentiment to COVID-19. Public opinion gathering is done through Twitter social media using Indonesian. A tweet is then given a label automatically using the library polyglot on Python 3. The model is using a Multinomial Naïve Bayes classification algorithm with 10-fold cross-validation. Data used in this research is tweet data in Indonesian from March 2nd to November 9th 2020. Model successfully predicted tweet sentiment with accuracy of 67,66% and f1-score for negative class 0,7184, neutral class 0,5538, and positive class 0,7308.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/108969
      Collections
      • UT - Computer Science [1969]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository