Show simple item record

dc.contributor.advisorMunibah, Khursatul
dc.contributor.advisorTjahjono, Boedi
dc.contributor.authorRamazayandi, Riski
dc.date.accessioned2021-01-20T02:12:43Z
dc.date.available2021-01-20T02:12:43Z
dc.date.issued2021
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/105331
dc.description.abstractProduksi padi nasional pada 2019 sebesar 54,60 juta ton Gabah Kering Giling (GKG) atau mengalami penurunan sebanyak 4,60 juta ton dibandingkan tahun 2018. Salah satu upaya yang dapat dilakukan untuk meningkatkan produksi padi adalah dengan menghitung luas tanam dan luas panen melalui pendekatan identifikasi sebaran fase tumbuh tanaman padi. Penelitian ini bertujuan mentransformasi nilai piksel Citra Sentinel-2A menjadi nilai reflektan, menerapkan klasifikasi random forest untuk mengidentifikasi fase tumbuh tanaman padi, dan uji akurasi klasifikasi random forest dalam mengidentifikasi fase tumbuh tanaman padi. Pengumpulan data lapang dilaksanakan di Desa Hegarmanah pada 26 Januari-29 Juni 2020. Penelitian ini menggunakan metode klasifikasi random forest, yang merupakan metode klasifikasi berdasarkan pohon keputusan (decision tree). Penelitian ini menggunakan data sekunder berupa data penelitian di Kecamatan Bojongpicung, Ciranjang, Haurwangi dengan tujuh akuisisi citra, yaitu 6, 26, 31 Desember 2017, 19 dan 24 Februari 2018, 16 dan 31 Maret 2018 digunakan sebagai model yang kemudian diaplikasikan ke lahan sawah penelitian di Desa Hegarmenah dengan tiga akuisisi citra, yaitu 10 Maret, 9 April, dan 29 April 2020. Hasil penelitian menunjukkan digital number bernilai antara 0-15.745 dan nilai reflektan berkisar antara 0-1. Hasil klasifikasi di tiga kecamatan menunjukkan kontinuitas, dimana fase bera basah pada 6 Desember 2017 hingga fase bera kering pada 31 Maret 2018. Ketujuh akuisisi memiliki nilai overall accuracy di atas 75%. Aplikasi model yang dibangun dari akuisisi 19 Februari 2018 menunjukkan kontuinitas fase yang sesuai dengan data lapang, dimana fase generatif pada 10 Maret 2020, fase harvesting pada 9 April 2020, dan fase bera kering pada 29 April 2020. Kesesuaian hasil aplikasi yang dibangun dari model tersebut menunjukkan nilai akurasi yang tinggi, yaitu 89%.id
dc.description.abstractNational rice production in 2019 amounted to 54.60 million tons of Gabah Kering Giling (GKG) or decreased by 4.60 million tons compared to 2018. One of the efforts that to be done to increase the production of rice is to calculate the planted area and harvest area through the identification approach of paddy rice growth phases. The objective of this study was to transform the Sentinel-2A image pixel value into a reflectance value, application random forest classification to identify the growth phases of paddy rice, and random forest classification accuracy test to identify the growth phases of paddy rice. The fields data was collected in Hegarmanah Village from January 26th until June 29th, 2020. This research is used random forest classification, which is a classification method based on a decision tree. This study used secondary data, consists of a research data in Bojongpicung, Ciranjang, and Haurwangi District with seven imagery acquisition, namely December 6th, 26th, and 31st, 2017, February 19th and 24th, 2018, March 16th and 31st, 2018 used as a model, then applied it to the research paddy fields in Hegarmanah Village with three imagery acquisition, namely March 10th, April 9th and 29th, 2020. The results showed that the digital number ranges from 0-15.745 and the reflectance value range from 0-1. The classification results in three sub-districts showed continuity, with the wet fallow phase on December, 6th 2017 and the dry fallow phase on March, 31st 2018. The seven acquisitions have an overall accuracy value above 75%. The model application built from the acquisition of February 19th, 2018 shows the continuity of the phases according to the field data, where the generative phase is on March 10, 2020, the harvesting phase is on April 9, 2020, and the dry fall phase on April 29, 2020. The suitability of the results of the applications built from the model indicates a high accuracy value, namely 89%.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleCitra Sentinel-2A untuk Identifikasi Fase Tumbuh Tanaman Padi dengan Klasifikasi Random Forestid
dc.title.alternativeSentinel-2A Imagery for Identification of Paddy Rice Growth Phases with Random Forest Classificationid
dc.typeUndergraduate Thesisid
dc.subject.keyworddigital numberid
dc.subject.keywordgrowth phaseid
dc.subject.keywordrandom forestid
dc.subject.keywordreflectance valueid
dc.subject.keywordsentinel-2a imageryid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record