Design of Satellite Imagery-Based Productivity Estimation System using Yolov8 for Digital Transformation of Smallholder Palm Oil Supply Chain Traceability
Abstract
This project aims to develop a satellite imagery-based productivity estimation system for palm oil plantations that meets user requirements and supports an independent palm oil supply chain traceability system. Data were sourced from Worldview 3 satellite imagery and processed using GIS software to create fused images with a 0.5-meter resolution. Data preparation included image cropping, labeling, and augmentation using Roboflow. The YOLOv8 model was trained to detect and classify palm trees. After training, the model was deployed in a web application for productivity estimation, allowing users to upload images and input productivity data. The results indicated that the model could detect and classify palm trees with adequate accuracy, calculate productivity estimates based on land area, and detect tree counts. However, issues such as automatic land area data integration and the influence of environmental conditions on productivity estimation need to be resolved. These new findings highlight the significant potential for improving the efficiency and accuracy of palm oil productivity estimations and enhancing supply chain traceability. Proyek ini bertujuan untuk mengembangkan sistem estimasi produksi berbasis citra satelit untuk perkebunan kelapa sawit, yang memenuhi kebutuhan pengguna dan mendukung sistem keterlacakan rantai pasok kelapa sawit independen. Data diambil dari citra satelit Worldview 3 dan diproses menggunakan perangkat lunak GIS untuk menghasilkan gambar gabungan dengan resolusi 0,5 meter. Proses persiapan data mencakup pemotongan gambar, pelabelan, dan augmentasi menggunakan Roboflow. Model YOLOv8 dilatih untuk mendeteksi dan mengklasifikasikan pohon kelapa sawit. Setelah pelatihan, model diterapkan dalam aplikasi web untuk estimasi produksi yang memungkinkan pengguna mengunggah gambar dan memasukkan data produksi. Hasil penelitian menunjukkan bahwa model dapat mendeteksi dan mengklasifikasikan pohon kelapa sawit dengan akurasi memadai serta menghitung estimasi produksi berdasarkan area lahan dan jumlah pohon yang terdeteksi. Namun, beberapa masalah masih perlu diselesaikan, seperti integrasi otomatis data luas lahan dan pengaruh kondisi lingkungan dalam perhitungan estimasi produksi. Temuan baru dari penelitian ini menunjukkan potensi signifikan dalam peningkatan efisiensi dan akurasi estimasi produksi kelapa sawit, serta peningkatan keterlacakan rantai pasok.