Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/55265| Title: | Eksplorasi Masalah Logaritma Diskret pada Finite Field GF(3m) The Exploration of Discrete Logarithm over Finite Field GF(3m) |
| Authors: | Guritman, Sugi Aliatiningtyas, Nur Fatimah, Ai Tusi |
| Keywords: | liscrete logarithm problem cyclic group finite field GF(3m ) |
| Issue Date: | 2009 |
| Publisher: | IPB (Bogor Agricultural University) |
| Abstract: | Banyak algoritme kriptografi yang tumpuan keamanannya menggunakan masalah logaritma diskret pada suatu grup siklik. Misal G adalah grup siklik hingga berorder n, a adalah generator dari G, dan j3 E G. Logaritma diskret dari j3, dengan basis a, dinotasikan loga j3 adalah integer tunggal x, O:S x:S n - 1, sedemikian sehingga j3 = 0: (Menezes et al. 1997). Jika n besar, maka logaritma diskret menjadi tak layak hitung. Masalah logaritma diskret didefinisikan sebagai berikut : diberikan grup siklik hingga G berorder n, suatu generator a dari G, dan j3 E G, bagaimana menentukan integer x, 0 :s x :s n - 1 sedemikian sehingga of == j3. Algoritme untuk menyelesaikan masalah logaritma diskret adalah exhaustive search, baby-step giant-step, Pollard-rho, Pohlig-Hellman, dan indexcalculus (Menezes et al. 1997). Algoritme-algoritme tersebut dieksplorasi sehingga dapat digunakan padafinite field GF(3m ). Eksplorasi masalah logaritma diskret padafinite field GF(3m ) juga menghasilkan algoritme yakni algoritme naif negatif, baby-step mother-step, baby-step mother free-step dan baby-step freestep. The security of many public~key algorithms is based on the problem of finding discrete logarithms. The generalized discrete logarithm problem is the following: given a finite cyclic group G of order n, a generator a of G, and an element fl E G, find the integer x, 0 ~ x ~ n - 1, such that 0: = fl. Algorithm for discrete logarithm problem focused on Menezes et al. (1997) that consist of exhaustive search algorithm, the baby-step giant-step algorithm, Pollard's rho algorithm, Pohlig-Hellman algorithm, and index-calculus algorithm. These algorithms are explorated to be used in discrete logarithm problem over finite field GF(3m ). The exploration also produces some algorithms, i.e. naif negative algorithm, baby-step mother-step algorithm, baby-step mother free-step algorithm, and baby-step free-step algorithm. All algorithms implemented using Maple 11. The Pohlig-Hellman and baby-step giant-step algorithms are efficient enough to be used in discrete logarithm problem over finite field GF(3m ) for m < 20. |
| URI: | http://repository.ipb.ac.id/handle/123456789/55265 |
| Appears in Collections: | MT - Mathematics and Natural Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2009atf.pdf Restricted Access | full text | 35.36 MB | Adobe PDF | View/Open |
| Abstract.pdf Restricted Access | Abstract | 424.27 kB | Adobe PDF | View/Open |
| BAB I Pendahuluan.pdf Restricted Access | BAB I | 434.8 kB | Adobe PDF | View/Open |
| BAB II Tinjauan Pustaka.pdf Restricted Access | BAB II | 923.71 kB | Adobe PDF | View/Open |
| BAB III Hasil dan Pembahasan.pdf Restricted Access | BAB III | 2.31 MB | Adobe PDF | View/Open |
| BAB IV Kesimpulan dan Saran.pdf Restricted Access | BAB IV | 334.93 kB | Adobe PDF | View/Open |
| Cover.pdf Restricted Access | Cover | 287.58 kB | Adobe PDF | View/Open |
| Daftar Pustaka.pdf Restricted Access | Daftar Pustaka | 369.16 kB | Adobe PDF | View/Open |
| Lampiran.pdf Restricted Access | Lampiran | 1.04 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.