Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/55265
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGuritman, Sugi
dc.contributor.advisorAliatiningtyas, Nur
dc.contributor.authorFatimah, Ai Tusi
dc.date.accessioned2012-06-27T02:53:43Z
dc.date.available2012-06-27T02:53:43Z
dc.date.issued2009
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/55265
dc.description.abstractBanyak algoritme kriptografi yang tumpuan keamanannya menggunakan masalah logaritma diskret pada suatu grup siklik. Misal G adalah grup siklik hingga berorder n, a adalah generator dari G, dan j3 E G. Logaritma diskret dari j3, dengan basis a, dinotasikan loga j3 adalah integer tunggal x, O:S x:S n - 1, sedemikian sehingga j3 = 0: (Menezes et al. 1997). Jika n besar, maka logaritma diskret menjadi tak layak hitung. Masalah logaritma diskret didefinisikan sebagai berikut : diberikan grup siklik hingga G berorder n, suatu generator a dari G, dan j3 E G, bagaimana menentukan integer x, 0 :s x :s n - 1 sedemikian sehingga of == j3. Algoritme untuk menyelesaikan masalah logaritma diskret adalah exhaustive search, baby-step giant-step, Pollard-rho, Pohlig-Hellman, dan indexcalculus (Menezes et al. 1997). Algoritme-algoritme tersebut dieksplorasi sehingga dapat digunakan padafinite field GF(3m ). Eksplorasi masalah logaritma diskret padafinite field GF(3m ) juga menghasilkan algoritme yakni algoritme naif negatif, baby-step mother-step, baby-step mother free-step dan baby-step freestep.en
dc.description.abstractThe security of many public~key algorithms is based on the problem of finding discrete logarithms. The generalized discrete logarithm problem is the following: given a finite cyclic group G of order n, a generator a of G, and an element fl E G, find the integer x, 0 ~ x ~ n - 1, such that 0: = fl. Algorithm for discrete logarithm problem focused on Menezes et al. (1997) that consist of exhaustive search algorithm, the baby-step giant-step algorithm, Pollard's rho algorithm, Pohlig-Hellman algorithm, and index-calculus algorithm. These algorithms are explorated to be used in discrete logarithm problem over finite field GF(3m ). The exploration also produces some algorithms, i.e. naif negative algorithm, baby-step mother-step algorithm, baby-step mother free-step algorithm, and baby-step free-step algorithm. All algorithms implemented using Maple 11. The Pohlig-Hellman and baby-step giant-step algorithms are efficient enough to be used in discrete logarithm problem over finite field GF(3m ) for m < 20.
dc.publisherIPB (Bogor Agricultural University)
dc.subjectliscrete logarithm problemen
dc.subjectcyclic groupen
dc.subjectfinite field GF(3m )en
dc.titleEksplorasi Masalah Logaritma Diskret pada Finite Field GF(3m)en
dc.titleThe Exploration of Discrete Logarithm over Finite Field GF(3m)
Appears in Collections:MT - Mathematics and Natural Science

Files in This Item:
File Description SizeFormat 
2009atf.pdf
  Restricted Access
full text35.36 MBAdobe PDFView/Open
Abstract.pdf
  Restricted Access
Abstract424.27 kBAdobe PDFView/Open
BAB I Pendahuluan.pdf
  Restricted Access
BAB I434.8 kBAdobe PDFView/Open
BAB II Tinjauan Pustaka.pdf
  Restricted Access
BAB II923.71 kBAdobe PDFView/Open
BAB III Hasil dan Pembahasan.pdf
  Restricted Access
BAB III2.31 MBAdobe PDFView/Open
BAB IV Kesimpulan dan Saran.pdf
  Restricted Access
BAB IV334.93 kBAdobe PDFView/Open
Cover.pdf
  Restricted Access
Cover287.58 kBAdobe PDFView/Open
Daftar Pustaka.pdf
  Restricted Access
Daftar Pustaka369.16 kBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran1.04 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.