Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/51995
Title: Identification Seagrass Condition from ALOS AVNIR-2 using Artificial Neural Network at Pari Island
Authors: Seminar, Kudang Boro
Wijanarto, Antonius B.
Firdaus, Amran
Keywords: Seagrass condition
ALOS AVNIR-2
ANN classification
overall accuracy
producer accuracy
user accuracy
Pari Island
Issue Date: 2011
Abstract: Seagrass beds have important roles in marine life, but the unavailable of information about the condition of seagrass causes difficulties in managing coastal areas properly. Regularly updated and accurate information on the percentage cover of seagrass is an essential component of the knowledge required to monitor, understand and manage this resource. Artificial Neural Network (ANN) was applied to ALOS AVNIR-2 to identify seagrass condition. Twenty two classification scenarios were done to compare the result of accuracy. There are three class of seagrass condition. Seagrass cover more than 60% indicates the condition of good seagrass. Seagrass cover from 30% to 59,9% indicates the condition of medium seagrass. Seagrass cover below 29,9% indicates the condition of poor seagrass. Best accuracy was obtained by scenario H by entering combination of blue (0.42 to 0.50 μm) and NIR (0.76 to 0.89 μm) wavelength plus water depth data as input parameters, with a value of 71.43% overall accuracy. However, looking at individual class, Scenario C, which is 58.33% of overall accuracy by using combination of blue (0.42 to 0.50 μm), green (0.52 to 0.60 μm), NIR (0.76 to 0.89 μm) wavelength plus water depth achieved higher producer and user accuracy. Overall, the result of identification seagrass condition from ALOS AVNIR-2 using artificial neural network at Pari Island in 2010 is dominated by poor seagrass, while good seagrass and medium seagrass were found in small area.
Padang lamun memiliki peran penting dalam kehidupan laut, namun tidak tersedianya informasi tentang kondisi padang lamun menyebabkan kesulitan dalam mengelola kawasan pesisir dengan benar. Memperperbaharui secara teratur dan akurat tentang informasi luas tutupan lamun merupakan hal yang penting dari pengetahuan yang dibutuhkan untuk memantau, memahami dan mengelola sumberdaya ini. Artificial Neural Network (ANN) telah diterapkan pada ALOSAVNIR 2 untuk mengetahui kondisi lamun. Dua puluh dua skenario klasifikasi dilakukan untuk membandingkan hasil akurasi. Ada tiga kelas kondisi lamun. Tutupan lamun lebih dari 60% menunjukkan kondisi padang lamun baik. Tutupan lamun dari 30% sampai 59,9% menunjukkan kondisi lamun sedang. Tutupan lamun dibawah 29,9% menunjukkan kondisi lamun jelek.
URI: http://repository.ipb.ac.id/handle/123456789/51995
Appears in Collections:MT - Mathematics and Natural Science

Files in This Item:
File Description SizeFormat 
2011afi.pdf
  Restricted Access
Full Text2.52 MBAdobe PDFView/Open
Abstract.pdf
  Restricted Access
Abstrak331.72 kBAdobe PDFView/Open
Appendix.pdf
  Restricted Access
Lampiran383.1 kBAdobe PDFView/Open
BAB I Introduction.pdf
  Restricted Access
Bab I469.93 kBAdobe PDFView/Open
BAB II Literature Review.pdf
  Restricted Access
Bab II453.01 kBAdobe PDFView/Open
BAB III Methodology.pdf
  Restricted Access
Bab III911.13 kBAdobe PDFView/Open
BAB IV Result and Discussion.pdf
  Restricted Access
Bab VI1.78 MBAdobe PDFView/Open
BAB V Conclusion.pdf
  Restricted Access
Bab V339.9 kBAdobe PDFView/Open
Cover.pdf
  Restricted Access
Cover325.25 kBAdobe PDFView/Open
References.pdf
  Restricted Access
Daftar Pustaka329.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.