Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/51995
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSeminar, Kudang Boro
dc.contributor.advisorWijanarto, Antonius B.
dc.contributor.authorFirdaus, Amran
dc.date.accessioned2011-11-29T06:07:42Z
dc.date.available2011-11-29T06:07:42Z
dc.date.issued2011
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/51995
dc.description.abstractSeagrass beds have important roles in marine life, but the unavailable of information about the condition of seagrass causes difficulties in managing coastal areas properly. Regularly updated and accurate information on the percentage cover of seagrass is an essential component of the knowledge required to monitor, understand and manage this resource. Artificial Neural Network (ANN) was applied to ALOS AVNIR-2 to identify seagrass condition. Twenty two classification scenarios were done to compare the result of accuracy. There are three class of seagrass condition. Seagrass cover more than 60% indicates the condition of good seagrass. Seagrass cover from 30% to 59,9% indicates the condition of medium seagrass. Seagrass cover below 29,9% indicates the condition of poor seagrass. Best accuracy was obtained by scenario H by entering combination of blue (0.42 to 0.50 μm) and NIR (0.76 to 0.89 μm) wavelength plus water depth data as input parameters, with a value of 71.43% overall accuracy. However, looking at individual class, Scenario C, which is 58.33% of overall accuracy by using combination of blue (0.42 to 0.50 μm), green (0.52 to 0.60 μm), NIR (0.76 to 0.89 μm) wavelength plus water depth achieved higher producer and user accuracy. Overall, the result of identification seagrass condition from ALOS AVNIR-2 using artificial neural network at Pari Island in 2010 is dominated by poor seagrass, while good seagrass and medium seagrass were found in small area.en
dc.description.abstractPadang lamun memiliki peran penting dalam kehidupan laut, namun tidak tersedianya informasi tentang kondisi padang lamun menyebabkan kesulitan dalam mengelola kawasan pesisir dengan benar. Memperperbaharui secara teratur dan akurat tentang informasi luas tutupan lamun merupakan hal yang penting dari pengetahuan yang dibutuhkan untuk memantau, memahami dan mengelola sumberdaya ini. Artificial Neural Network (ANN) telah diterapkan pada ALOSAVNIR 2 untuk mengetahui kondisi lamun. Dua puluh dua skenario klasifikasi dilakukan untuk membandingkan hasil akurasi. Ada tiga kelas kondisi lamun. Tutupan lamun lebih dari 60% menunjukkan kondisi padang lamun baik. Tutupan lamun dari 30% sampai 59,9% menunjukkan kondisi lamun sedang. Tutupan lamun dibawah 29,9% menunjukkan kondisi lamun jelek.id
dc.subjectSeagrass conditionen
dc.subjectALOS AVNIR-2en
dc.subjectANN classificationen
dc.subjectoverall accuracyen
dc.subjectproducer accuracyen
dc.subjectuser accuracyen
dc.subjectPari Islanden
dc.titleIdentification Seagrass Condition from ALOS AVNIR-2 using Artificial Neural Network at Pari Islanden
Appears in Collections:MT - Mathematics and Natural Science

Files in This Item:
File Description SizeFormat 
2011afi.pdf
  Restricted Access
Full Text2.52 MBAdobe PDFView/Open
Abstract.pdf
  Restricted Access
Abstrak331.72 kBAdobe PDFView/Open
Appendix.pdf
  Restricted Access
Lampiran383.1 kBAdobe PDFView/Open
BAB I Introduction.pdf
  Restricted Access
Bab I469.93 kBAdobe PDFView/Open
BAB II Literature Review.pdf
  Restricted Access
Bab II453.01 kBAdobe PDFView/Open
BAB III Methodology.pdf
  Restricted Access
Bab III911.13 kBAdobe PDFView/Open
BAB IV Result and Discussion.pdf
  Restricted Access
Bab VI1.78 MBAdobe PDFView/Open
BAB V Conclusion.pdf
  Restricted Access
Bab V339.9 kBAdobe PDFView/Open
Cover.pdf
  Restricted Access
Cover325.25 kBAdobe PDFView/Open
References.pdf
  Restricted Access
Daftar Pustaka329.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.